

Classes modules and some basic
graphical functions

Loriano Storchi

loriano@storchi.org

http:://www.storchi.org/

mailto:loriano@storchi.org

RECURSIVE FUNCTIONS

Recursive functions

● The adjective "recursive" originates from the Latin verb
"recurrere", which means "to run back". And this is what a
recursive definition or a recursive function does: It is
"running back" or returning to itself.

● Recursion is a way of programming or coding a problem,
in which a function calls itself one or more times in its
body. Usually, it is returning the return value of this function
call. If a function definition fulfils the condition of recursion,
we call this function a recursive function.

Recursive functions

● A function that calls itself

It is a succession in which each
term is the sum of the two
previous ones

Fibonacci sequence, such that
each number is the sum of the
two preceding ones, starting
from 0 and 1

Recursive functions

● A function that calls itself

Fibonacci sequence, such that
each number is the sum of the
two preceding ones, starting
from 0 and 1

MODULES

Modules

● In programming, a definition of library can be following: a
collection of pre-compiled and non-volatile routines used
by programs. These routines, sometimes called modules,
can include configuration data, documentation, message
templates, subroutines, classes, values or type
specifications.

● Code reuse. Code reuse, also called software reuse, is the
use of existing software, or software knowledge, to build
new software, following the reusability principles.

Modules

● Modules are source code, so a collection of data, functions
and classes that can be imported and used within a
source. Consider a module to be the same as a code
library.

● Writing your own module it is indeed simple. The code
inside the module is executed when this is imported

https://github.com/lstorchi/teaching/tree/master/modules/
common

Modules

● import module

– In this case, to use a module member I will write:
module.function or module.data

● from modulo import func1, func2, class1

– In such a case it imports only some functions or classes from
the module, and I can call them locally simply writing: func1
(par1, par2)

● from modulo import *

– In this case, it imports all the classes, data and functions from
the module. It is risky as quite surely I will “dirty the local
namespace”

Modules

● Modules are source code, so a collection of data, functions
and classes that can be imported and used within a
source. Consider a module to be the same as a code
library.

Modules

Modules

● Import the module in the colab notebook

Modules

● Use the module

If __name__ == “__main__”

● In python happens sometimes to be faced with a block of code
like the following:

def main ():

 …

if __name__ == “__main__”:

 main ()

The meaning can appear cryptic, but in reality it actually makes
the main function code run only if the file is not imported as a
module. A simple example should clarify the operation

__main__

What happens when the written code is
imported as a module? The main () function is
not performed, unlike ...

CLASSES (OOP)

Classes (OOP)

● OOP: this paradigm makes use of objects that are defined
according to their characteristics, then attributes (data) and
functions (methods).

● Object-Oriented Programming: it helps to structure large
programs well and greatly helps reuse the code

● Classes therefore allow to define objects according to their
attributes and according to their behavior, then methods. A
class defines the set while a particular object is a
specific element.

Python classes

● We will deal here only with the essentials of using classes in python

● The class keyword introduces the class

● Object creation is simple object_name = classname
(attributes_if_necessary)

● There is a special method in the class called __init __ () and is called when
the object is created

● The methods of a class are called using, as has already been seen,
object_name.method (parameters if any)

● To define a subclass (see inheritance) we use: class sub2class
(parent_class):

https://github.com/lstorchi/teaching/tree/master/classes

Python classes

● Firstly we need to import the file:

An example

Let's see together the
implementation of a molecule
class and an atom (see in the
repo git classes / mol.py)
these two classes will allow
us to see in practice the
basic elements of the classes
in python

A MODULE : MATPLOTLIB

Matplotlib

● Let’s try to have a closer look to a module we already used

Matplotlib

● Let’s try to have a closer look to a module we already used

Matplotlib

● Let’s try to have a closer look to a module we already used

EXERCISE

Exercise

● Write a program that reads all value from numbers.txt and
plots the histogram, maybe also all the values and the
mean

let's have fun with 3D graphics

VTK

● We see a profoundly OO framework, developed in C ++,
but above all let's have a little fun

● VTK Visualization Toolkit by Kitware Inc.

● 3D scientific visualization, Tcl / Tk bindings, Python, Java,
GUI bindings Qt among others

VTK

● To visualize elements in a scene in VTK you have to build a
pipeline

● We will not use all the elements of the pipeline but only the
essential ones

VTK pipeline

● Sources: VTK puts numerous classes that can be used to construct
simple geometric objects such as cubic, spheres, etc etc (for
example vtkSpehereSource)

● Maps: maps the data to primitives such as points and lines that can
then be viewed by the renderer (for example vtkPolyDatMapper)

● Actors: vtkActor represents an object in the scene

● Rendering: this is the process in which a 3D object plus the
specifications of material and light as well as the position of the
camera are rendered in a 2D image that can then be displayed on a
screen. (vtkRenderer, vtkRendereWindow creates a window in
which redere can draw, and instead the vtkRenederWindowInterator
class creates a "navigable" window via mouse for example)

A couple of actors
j – joystick (continuous) mode

t – trackball mode

c –camera move mode

a –actor move mode

left mouse – rotate x,y

ctrl - left mouse – rotate z

middle mouse –pan

right mouse –zoom

r –reset camera

s/w –surface/wireframe

u –command window

e –exit

Source code vtk/twoactors.py

EXERCISE

Exercise

● Using the atom and molecule classes seen above, add a
method to the atom class to manage the angstom
dimensions of the atom (set and get) and if you want
also its "color" in RGB for example. Then we try to
represent the methane molecule

Exercise

Create a molecule object

Add all atoms to the molecule

For a in atoms

 Create the sphere source

 Create the mapper ← input source

 Create the actor ← input mapper

 Add the actor to the rederer

BACKUP

Write a module

● Writing your own module it is indeed simple. The code
inside the module is executed when this is imported

● Start by creating a new PyDev project:

Write a module

● Create a new folder

Write a module

● Create a new file mtestmod.py in common:

Write a module

● mtestmod.py is our test module:

Write a module

● Create the main.py file in the root project directory:

Write a module

● Writing your own module it is indeed simple. The code
inside the module is executed when this is imported

Modules

● We have seen for example by using sys.path, it is a normal list
that I can edit (lists are mutable), python looks for a module
with the name required in all the paths contained in the list

● At start-up, the list will contain some default path, the current
directory and possibly the path contained in the PYTHONPATH
environment variable

● When a module (file) is imported for the first time a .pyc file is
created. This is the module "compiled/converted" in byte-code.
Subsequent times, unless the module has been modified,
python will use this file already "compiled", so the upload will be
faster, but not the execution (IMPORTANT)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

