

Programming, control structures

Loriano Storchi

loriano@storchi.org

http:://www.storchi.org/

mailto:loriano@storchi.org

FLOWCHART AND
PSEUDOCODE

FLOWCHART AND
PSEUDOCODE

● We will only go through some basic example: Calculate
the Interest of a Bank Deposit

 Step 1: Read amount,
 Step 2: Read years,
 Step 3: Read rate,
 Step 4: Calculate the interest with formula
 "Interest=Amount*Years*Rate/100
 Step 5: Print interest,

FLOWCHART AND
PSEUDOCODE

● Determine and Output Whether Number N is Even or Odd

 Step 1: Read number N,
 Step 2: Set remainder as N modulo 2,
 Step 3: If remainder is equal to 0 then
 number N is even, else number
 N is odd,
 Step 4: Print output.

FLOWCHART AND
PSEUDOCODE

● For a given value, Limit, what is the smallest positive
integer Number for which the sum Sum = 1 + 2 + ... +
Number is greater than Limit. What is the value for this
Sum?

1. Enter Limit
2. Set Number = 0.
3. Set Sum = 0.
4. Repeat the following:
 a. If Sum > Limit, terminate the repitition,
 otherwise.
 b. Increment Number by one.
 c. Add Number to Sum and set equal to
 Sum.
5. Print Number and Sum.

CONTROL STRUCTURES

CONTROL STRUCTURES

There are three fundamental structures that are used for the algorithmic resolution
of problems: selection, iterations and sequence (sequence of instructions) (the
GOTO present in machine languages since the 70s has been progressively
discouraged / eliminated)

Examples: https://bitbucket.org/lstorchi/teaching
 https://github.com/lstorchi/teaching

https://bitbucket.org/lstorchi/teaching
https://github.com/lstorchi/teaching

SEQUENCES

Sequences

● Sequence control structure refers to the line-by-line
execution by which statements are executed sequentially,
in the same order in which they appear in the program.
They might, for example, carry out a series of read or write
operations, arithmetic operations, or assignments to
variables.

 Step 1: Read amount,
 Step 2: Read years,
 Step 3: Read rate,
 Step 4: Calculate the interest with formula
 "Interest=Amount*Years*Rate/100
 Step 5: Print interest,

SELECTION

Selections

● The general structure of a selection instruction is as follows:

if (condition 1)

 statements 1

else if (condition 2)

 statements 2

...

else

 statements N

endif

There can be so many else if

They do not necessarily have to
show all three elements, if, else
if and else, I can also have just a
single if

Selections

● Nesting, I can nest the selection instructions of course:

if (condition 1)

 statement 1

 if (condituion 2)

 statements 2

 end if

else

 statements 3

end if

Operators

● In all programming languages, I can use relationship
operators to compare numbers and variables, for example:

Int a;

a = 4 // operatori di assegnazione

If (a == 5)
{
 cout << “Hello” << std::endl;
}
else if (a > 5)
{
 cout << a << “ > 5 “ << std::endl;
}

Logical Operators

● I take for granted the logical operators AND, OR and NOT

Examples the following expression

5 < a < 7

In programming languages it is
broken into two elementary
expressions linked by the operator
AND:

(a > 5) AND (a < 7)

Bitwise operations

● Do not confuse the previous with the bitwise operations

● These are the operations that are used to manipulate bitwise
data, not to be confused with qunto seen in the previous slide

– & (AND)
– | (OR)
– ^ (XOR I.e. 1 XOR 1 is zero)
– ~ (ones' complement i.e. 0 to 1 and 1 to 0)
– >> (right shift 11100101 >> 1 is 01110010)
– << (left shift)

Bitwise operations

● A simple test just to clarify

Case structure

● Basically a series of if-then-else with some constraint. In practice, the choice
between the blocks of instruction is guided by the value of a certain variable:

switch variable:

 case val1:

 statements 1

 case val2:

 statements 2

 …

 default:

 default statements

If (variable == val1)
{
 Statements 1
}
else if (variables == val2)
{
 Statements 2
}
…
else
{
 Default statements
}

Example

 int i;

 i = 4;

 switch (i)

 {

 case 1:

 printf("vale uno \n");

 break;

 case 2:

 printf("vale due \n");

 break;

 default:

 printf("non uno non due\n");

 break;

 }

LOOPS

Loops

● There are three different types: while..do , do..while e for

● Not all languages necessarily have all three of these
structures

● These structures allow to repeat a block of
instructions until a condition occurs

● Also in this case it is possible to nest more loops one
inside the other

While..do e Do..while

● The block of instructions can also never be executed, since the
condition is checked at the beginning, as long as the condition is
true, the block of instructions is executed

WHILE (condition)

 statements

END DO

● do..while instead executes the block of instructions until the
condition is false

DO

 statements

WHILE (condition)

Example

● A simple C example:

int i = 0, N = 10;

while (i != N)

{

 printf("%d \n", i);

 i++;

}

Example

Example

Int i = 0, N = 10;

do

{

 printf (“%d \n”, i);

 i++; // i = i + 1

} while (i >= N);

For loop

● It executes a block of instructions a number of times known
from the beginning. Many programming languages force the
programmer to use a counter.

● Generally there is a counter which is an integer variable whose
value is "changed" step by step

● The end condition is generally determined by comparing the
counter variable with a value

for (counter = startingvalue A endvalue STEP = stepvalue)

 statements

end for

Example

int i;

for (i=0; i<10; ++i)

{

 printf (“%d \n”, i);

}

Example

for i in range(10):

 print(i)

ARRAY

Array

● How can I easily handle information that is structured by
nature? For example a complex number, or a vector or a
matrix?

● Typical structured variables are arrays

– For example, a vector of floating-point numbers in C can
be declared as: float v [10];

– We can then access the i-th element of the vector: v [i-1] =
3.5;

● Likewise I can define an array (two-dimensional array) as:
float m [10] [10];

Array

Example

● Example loops to perform a scalar multiplication between vectors

float a[N], b[N];

for (i=0; i<N; ++i)

{

 a[i] = (float)rand()/(float)(RAND_MAX/N);

 b[i] = (float)rand()/(float)(RAND_MAX/N);

}

s = 0.0;

for (i=0; i<N; ++i)

{

 s = s + a[i]*b[i];

}

Example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

