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Machine learning techniques can be divided into two foremost types:

Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw \
inferences from data sets consisting of input data without labeled responses (ie. clusteringlill e Lo
i W L =

Supervised: used when you want to predict or explain_the data you possess. A supervised &
algorithm takes a known set of input data and known responses to the data (output] and trains a

model to generate reasonable predictions

Reinforcement Learning: the algorithms learn to react to an environment on their own. An
agent is in a situation of trial and error, where the consequences of its actions have an impact on
the environment and also on the problem’s goal. The agent is punished or rewarded on the basis of
its behavior, with the idea that, in the future, it will prefer optimal actions (i.e. our intelligent

Tommaso Tedeschi, Marco Baioletti, Diego Ciangottini, Valentina Poggioni, Danielejp®
{1} Spiga, Loriano Storchi, Mirco Tracolli, "Smart Caching in a Data Lake for High Energy
I Physics Analysis", Journal of Grid Computing, DOI: 10.1007/s10723-023-09664-z (2023)




Regression

What will be the temperature
tomorrow?

Fahrenheit

Classification

Will it be hot or cold
tomorrow?
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Fahrenheit

Features could be:
the day of the yea



---% Build Model
F(X1, X2)=Y

Use Model
7
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its length, width (dimension of
the image), and height (i.e the
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and dot product of the kernel -

and the image are com/puted
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/ Convolut

jonal Layers — extracting feature

Basset: learning the regulator
code of the accessible genome
with deep convolutional neural
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Loriano Storchi, Gabriele Cruciani,

Simon Cross, "DeepGRID: Deep
Learning using GRID descriptors for
BBB prediction", Journal of
Chemical Information and Modeling,
DOI: 10.1021/acs.jcim.3c00768

s / JN (2023) IN/ /
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]Z / Machine Learning and the GRID Force-Fields
Foiii 4

GRID program: a computational procedure for determining energetically favourable binding sites on

molecules for functional groups of known structure through the use of PROBES.
The PROBE is moved through a grid of points superimposed on the target molecule (to each atoms of the target and

Atomlype is assigned) . Its interaction energy with the target molecule is computed by an empirical energ

a5 fry o

E, = Lennard-Jones potential E,,,= hydrogen bonding interaction energy E =

A = Z[E | + E[E = + E[E] + |'S]Welectrostatic function S= entropic term

[
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the GRID Force-Fields

/ Machine Learning and

Hydrogen-Bonding term E
1A q

4 -1
— * *
‘L KIEHB = Et Eo-
Sara Tortorella, Emanuele Carosati, Giovanni Bocci, Simon Cross, Gabriele Cruciani, Loriano
Storchi, "Combining Machine Learning and Quantum Mechanics Yields More Chemically-Aware

olecular Descriptors for Medicinal Chemistry Applications", Journal of Computational
Chemistry, DOI: 10.1002/jcc.26737 (2021)'
r 7 :




'/ / Machi

ne Learning and the GRID Force-

More chemically aware force-field

he energy values of the isocontour surfaces
chosen for H-bond donating probe (“N1,” probe)
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A model exists within VolSurf (PLS) — we have a baseline

| | . VolSur



VS-IgBB-332 dataset In-house dataset used to build the original VolSurf model
Light-BBclass-2105 dataset - Classification Generated from the Shaker/Parakkal

LightBBB dataset of 7000+ stltlcture-smn

After filtering by InChl to remove duplicates 4285 compounds remained (-40%)

Given that such a la large proportion of the dataset contained duplicates we
filtered also by Druglikeness to give 3464 compounds

10% of the dataset removed due to duplicate InChl strings o
diastereoisomerism

‘o |Light-IgBB- 416 dataset A subset of the 2105 dataset which had experimental IogBB



et ot
ataset Splitting
p_‘

For each dataset, subsets of compounds were randomly selected:
Tralnmg Set: 60% used to train the models










][ / DeepGRID is alignment independent
IR T AR

Each molecule conformation centred within a grid cage 0,0,0 to 30,30,30
21 Viewpoints' generated by rotating the molecule around each axis







DeepGRID

Architecture

Convolutio kaRLU
10 x 10 x 10 x 64 - Batch Normalizatio ropQut

W 1oxPosing
. Flatten
Dense + Batch Normalization +

- LeakyRelU + DropOut
- Final Dense Layer

21x 21x 21 x 64
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]Z / DeepGRID Hyperparameters optimization

Probes’
Descripeors Descripeion
aH2 DRY 0 P
B
v X Molecular volume
S X Molecular susface
POL Palanzabiity
Mw Molar mass
HH1-HAHS X Hydrogen bonding
A Amphiipholic moement
g i BV X X Best volumes
B W1-W3 X Hydrophilic regions
N ID1-108 X Hydrophobec integy moment
Cwil.-Cws X Capacity factor
Di-D8 X Hydrophobee regions
cr Critical padaing

Ay ! O P oganthm of partition coefficent
‘ D Diffusiviey r"‘

* Rlank, ather ways of caladdation, For deatails, see reference Crucian: e¢ al (2000)




]Z/ Random Forest Approach!

Each molecule conformation was used to




]Z/ Partial Least Squares Approach

K BBEach molecule conformation was used to

= also Y variable respect to PC r
P (Principal Components).



]Z / DeepGRID vs RF and PLS models

Volsurf3 Descriptors

Probes’ o
ipea _— » n
OH DRY )
X
X

POI
MW

HH1-HABY X
X X
-W8 %
1D1-108 X went
v1-Cw§ X
l) ng X
I) cfficent
DEFE
%, other ways of calouatia

Extracted features used by the dense layer

“"""L/K"M 'rf’u"‘f/‘w






MSE GMFE % <2.0 % <3.0 Without CHEBI1338620 MSE GMFE % <2.0 % <3.0

0.24 3.87 63.6 74.2 DeepGRID 75 0.19 2.79 646 754
0.18 3.09 60.0 81.5 RF 0.14 234 609 828
0.22 3.20 58.5 72.3 PLS 0.20 2.9/ 59.4 /34
0.27 3.77 431 66.2 VS3IigBB 0.23 3.18 43.8 67.2
VY - 1A / (, ’ r FWV




]Z / Removing CHEBI338620 as an outlier

0.25 90.00
80.00
0.20 70.00
60.00
0.15
50.00
% <2.0
010 WMSE  40.00 e
‘ 30.00
i 10.00
| 0.0 0.00

DeepGRID VS3 IgBB DeepGRID VS3 IgBB

B | Lower is better Higher is bette ’L
: y,*flw N 4*’»‘ Vﬁw



[;(™). -M)@L = O

MSE GMFE % <2.0 % <3.0
DeepGRID 75 0.38 5.04 53.0 65.1
RF 0.31 4.27 53.0 63.9
PLS 0.35 4.79 37.4 60.2

VS3igBB 0.42 /.78 36.1 26.6




DeepGRID

‘ ‘ g i
-~ /Lower is better
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]Z / DeepGRID gives a robust model
AR,

'D \/_‘
4’-
100% 4
10% 8 TrainMSE
¥ ValidMSE
TestMSE
1%
|
|




The DeepGRID model has successfully extracted relevant features from
the raw GRID MIFs and given a good model when compared to standard




]Z/ Regression — Classification
AT el Y
The regression models for described can also be used for classification




]Z/ Classification: VS- IgBB-332 model

TR el SR
At a minimal threshold of 0.1, all models predict with >90% accuracy

The RF model is slightly better /

- ~L IA Y,

= O
=

0.9
0.8
M DeepGRID
RF
0.7 WmPLS
WVS3 IgBB
0.6
by 050 oS ’ !;

o

o

o

o

0.1 0.15
Threshold for Classification




]Z/ Classification Light-1gBB-416 model

All models are fairly equal \ /

). |
0.80
B DeepGRID
RF
: HmPLS
HVS3IgBB
. 0 0.05 0.1 0.15 0.2 0.25

Threshold for Classification

At minimal threshold of 0.1, all models predict with ~90% accurac

Mr‘ﬂ&,



]Z/ Classiﬁction Models - Light-lgBB-2105 dataset

TR VAT SRR
ew classification models were built using DeepGRID and Random

orest (with hyperparameter optimization),
nitial attempts with DeepGRID kept stalling during learning
Potentially due to data imbalance?

The BBB- cpds were artificially augmented to bring the balance to
0.5:1

successful learnin

,/M 57’“"*% %‘“




)[/ DeepGR

dataset
' AUC Full Set: 0.97 Tes Set: 9.87 s / i

DeepGRID L DeepGRID Train+Validation DeepGRID Test

=

|D Classification Models - Light-lgBB-2105
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False'“ PositiverRate Falsé Positivé'Rate




ROC RF L ROC RF Train+Validation , ROC RF Test

True Positive Rate
True <Positive <Rate
True Positive Rate

— AUC =095 — AUC =0.97 —— AUC =0.84
----- Random -===- Random --==- Random ,
04 . 06 08 o 04 L. 06 03 10 : 00 X} . 06 08 10
False Positive Rate False Positive Rate False Positive Rate
A 4;:_ :., " v




]Z / DeepGRID model the best for classification

ST T AR,
All models classification performance (ROC-AUC) on the 2105 dataset

100
0.95
0.90
0.85
0.80

0.75
0.70
0.65
0.60
0.55
0.50

VS-IgBB-332 VS-IgBB-332 VS-IgBB-332  Original nght lg%— nght IgBB- nght IgBB ight-lg Light-1gBB-
2105 2105
DeepGRD-R RF-R PLS-R VS3IgBB-R Dee pGHD—R RF R pGRIDFC RF-C




]Z VoISurf IgBB PLS model does a good job

AT T AR,
All models classification performance (ROC-AUC) on the 2105 dataset

100

0.95

0.90
0.85
0.80

0.75
0.70
0.65
0.60
0.55
0.50

VS-IgBB-332 VS-IgBB-332 VS-IgBB-332 | Original Ught IgEB- nght IgBB L|ght lgBB Light-lgBB-  Light-lgBB-
2105 2'05
DeepGRD-R RF-R S31g Dee pGHD—R RFR PLS-R DeepGRD-C
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Methods, such as random forest (RF) or neural network (NN), are very efficient 36 but not always
transparent, partially blurring the comprehension of the role played by the input variables in the final

Improvements toward the mterpretahlllty ‘of such “black-box” ML models have been made through
additional methodologies, such as model-agnostic methods (i.e., permutation feature importance)
A ML-based approach to build sets of features (or descriptors) starting from a given set of basic

variables (e.g., atomic properties), subsequently used to construct LR models (or formulas)

Inspired by the original work of Ghiringhelli et al. prediction of the difference in energy between RS and
[B; from that optimization, a classification of the most stable crystal structure between RS (rocksalt) and
[B (zinc blende) for semiconductor AB binary compounds naturally derives (full dataset is made of 82
compounds)

h r 4
Udaykumar Gajera, Loriano Storchi, Danila Amoroso, Francesco Delodovici, Silvia Picozzi "Towards
imachine learning for microscopic mechanisms:a formula search for crystal structure stability based on

atomic properties" Journal of Applied Physics, DOI: 10. 1063/5 0088177 (2022) /




7 Atomic Properties (APs)

IP
EA

HOMO Highest occupied level

LUMO Lowest unoccupied level

Ts

lonization potential
Electron Affinity

radii of s orbital

radii of p orbital
radii of d orbital

Binary system based on
Mulliken’s electronegativity(EN)

A,B where EN(A) < EN(B)

2 types of atoms

7 APs per atom

IP, EA, HOMO, LUMO, 75, 13,

5 prototype functions (f (X))

X, X2, X3,VX, eX

Material Feature Generator

Ex-1:Gen;’F _ M
©7 F5(APs) £ fy(APy)

e

For each possible model, calculate
average of RMSEs for random N test-
train splits using Linear Regression

_ i fP) £ fo(4Py)
f3(AP3) * f,(AP,)

AE

Selection of the best 10 formulas
having the smallest RMSE for
formula optimization

ax fi(APy) £ b x f,(AP,)

AR P > LUP)

Top formulas to predict AE and
further physical analysis



GEN2: combine two prototype functions with the

numerator, forcing them to belong to the samej@llsame kind of APs at the numerator and a single
kind of APs, which is both “spatial™-like or both@ BIbrototype function at the denominator with an
"energy”like; one prototype function is at thef¥Maroument of a different kind with respect o the
denominator with the only constraint to be{ numerator ones. For instance, if AP, in f, (AP, )
and AP, in f, (AP, ) are “energy” terms (i.e., EA or
HOMQ), then AP, must be a “spatial” term (i.e., r,

)
i ‘/
1(AP)) + f2(AP,)
[ """'Jf Mr = _fﬂAP{) ;l.flu r—*IL 7&4

, L




 fi(AP)) * fy(APy)

MF — fi(APy) ifz(APz). ~ f:(AP3) * fo(APy)’
b f3(AP;) £ fy(APy) T.F e —— f..
! T\ l / 19 r- Vﬁv«




Formula avg (RMSE) RMSE R?

Success rate (%)

Generator type

0.117 x B0 _ 034 0.1455 0.1423 0.89
—0.751 X PB’(—A;’”B” 0.317 0.1296 0.1193 0.92
0.285 x @&\)/'EA— 0.387 0.1367 0.1309 0.91
0.774 x % 0.303 0.0995 0.0963 0.95
1155 x BB — 0.368 0.1103 0.1058 0.94

89

90

ol

94

96

1D descriptor””
GEN1
GEN2
GEN3

GEN4

1D formulas, along with related statistics: avg(RMSE) denotes the root mean squared error for average over 1000 random
" train-test splits of dataset. Instead, the RMSE is the root mean squared error for the entire dataset as training and test.




|
][ A Formula search W .-

a X fi(APy) % b x f,(AP,)
c Xf3(AP3) * d Xﬁ;(AP4)
sy M |

AE = m X

GRID search, for each set of weight coefficients generated
during the grid search, we also run the linear regression.
hus, we are performing a proper formula optimization, as at
each step of the grid search, we are updating both the
weight coefficients as well as the slope and intercept

Formula avg (RMSE) RMSE R? Success rate (%) Generator type
0.127 x LH00XEAB)- pl 357 0.1457 0.1419 0.89 89 1D descriptor”’
—1.870 x & 8°”\/’f(?0x°rf‘f;°’“’["’("” —0.968 0.1191 0.1143 0.93 91 GEN1

| 0.477 x 2TV '”O“‘loffo';:(‘f)sxV'LUMO(B —0.372 0.1340 0.1296 0.91 91 GEN2

| 1.609 x OIG‘fﬁgx’Pif;OH"f;‘om ~0.309 0.0991 0.0961 0.95 94 GEN3

| 1.207 x ST ERAOEL, 0,359 0.1045 0.1016 0.94 99 GEN4

0.512xr,(B)’+0.610 x1,(A)’




2 rp(A)?
Y 4 | 3

PRe R t AP

00 02 04 06 08 1.0

The final outcome of our procedure is a transparent
formula, not necessarily of easy mathematical
formulation, but revealing which part of the input
mostly affects the output, i.e., allowing the
id,entiﬁcation of the main driving physical feature

Interestingly, our results reveal the size of the A

cation to play a leading role in the phase
stabilization; in fact, the r_(A) radius appears in the
best-performing formulas more frequently than the
other basic atomic properties

Data fit functions are also shown, using
proportionality to rp(A)2 and rp(A)3 via a green
dashed line and a red straight line, respectively.




Generator Total Number of  Elapsed time (s) for 1D Elapsed time (s) for formula
generated formulas formula construction  optimization

GENI 106400 5117.32 180.84
GEN2 67840 3338.93 181.54
GEN3 1091200 51821.54 420.52
GEN4 278106 13237.39 418.62

Time needed to generate the best 1D formula and perform its optimization. All the calculations have
““been performed in a PC equipped with an Intel Core i5-8500 processor and 16 GiB of RAM.
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B Leonardo Aragao, Elisabetta Ronchieri, Giuseppe Ambrosio5, Diego Ciangottini, Sara Cutini, Cristina

‘Duma Pasquale Lubrano, Barbara Martelli, Davide Salomoni, Giusy Sergi, Daniele Spiga, Fabrizio Stracci,

_‘Lorlano Storchi "Air quality changes during the COVID-19 pandemic guided by robust virus-spreading datal
2 Bin Italy",to Air Quality, Atmosphere & Health, DOI: 10.1007/s11869-023-01495-x (2024) /




/ I - Density . & % . 1.00
Com. Density .. ‘ @ % . 075
‘ Depriv. Index ... @ L @ os0
; Featu re Sr it Latitude . .. @ §
J ¥ " Old-Young Ratio D . 0.00
4 AvgPM, (@ @ ® @ (Y )
Avg.SO, | @ ... @® -os
- Ave.NO @ & .. @ o
o 225328299 @w
Feature name Description §5££28 fﬁ ®
eE " 32"
Population Density Population divided by province’s area. S & ;
o]
Commuting Density | Percentage of commuters over population [8].
Deprivation Index Represents the multidimensionality of the social and material depri- ‘ > ;
vation concept [29] (calculated for the year 2012). (5‘ »ﬁlwmmmmwga,;f‘Mg
i e A |
Latitude North-south geographic coordinate regarding the province’s capital. -l e ‘\
Old-Young Ratio Number of individuals aged 20 or less over the ones aged 65 and over. . ‘ pmr\m e %y § “
. . . ' s W
Avg. PMig Average concentration of PMio during the whole study period. Tp:h T e
SQ.sz\pm T ‘x?efce
Avg. NO Average concentration of NO during the whole study period. % “
Avg. SOz Average concentration of SOz during the whole study period. ‘

e Fo ; 7




Dctalls

RMSE | R?
All features 0.320 0.950
Latitude Removed 0.341 0.943
Latitude and Comm. Density removed | 0.362 0.936

MEAN SQUARED ERROR REGRESSION LOSS

Population i
: 1
Density
Commuting B}‘“ —
Density

|
|

‘\ . _.'
Deprivation Y
Index
W,

Old-Young
Ratio

Avu ag

F:

o
Aversge ‘:

—.=

Aver age

~F

00 0.4 0.6 0.8
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]Z / Conclusionsgress

Deep Learning successfully used with GRID MIFs — DeepGRID
Regression models among the best

Larger Classification model the best (Test Set AUC: 0.87, Ovevrall AUC:
0.5 A R/ ™

Formula generator

Approach can be used also with small datasets

New generators can be easily plugged including different constraints
The final results is a mathematical formula human readable

st. Ge_neratlve,l'\I ,/ (; f/,\ ¥ fL 2
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