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My activities

o four Gomponent Dirac-Kohn-Sham Theory (BERTHA code)
O CNR and UNlPG \ _ hixmﬂdm.ﬂll mlr 4

o UNIPG and Mol J.scoveryTECHéwe H —

e HEP (High Energy Physics) - ML technlques and FPGA
(Field-programmable gate array) and Cloud Computing
o INFN and CERN

e Bio and Chemoinformatics
o UNICH




LINK TO THE CODE:

| |
—
= 2;.
— I =

ML Teachlng



https://github.com/lstorchi
mailto:loriano@storchi.org

Scikit-learn (also known as sklearn) is a popular and powerful open-source
Python library for machine learning.It provides a wide range of tools.
Pandas is a powerful and versatile open-source Python library for data
manipulation and analysis. It prowdes high-performance, easy-to-use data
structures and data analysis tools.™ s

TensorFlow An open-source library developed by Google for numerical
computation and large- scale machine Iearnlng m3|ly for deep neural
e m” ...... :
Keras A high-level AP for bmldmg and tralnlng neural networks
Matplotlib is a comprehensive and widely-used plotting library in Python.

NumPy: a fundamental library for scientific computing in Python. It provides:
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Machine Learning

Machine learning techniques can be divided into two foremost types:

o Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets ennsrstrng of mput data without Iabeled responses (i.e. clustering
algorithms)» = - —

o* Reinforcement Learning: the algorithms learn to react to an envrronment on their own. An
agent is in a situation of trial and error, where the consequences of |ts actrons have an impact on
the environment and also on the problem’s goal The agent is punrshed or rewarded on the basis of
its behavior, with the idea that, in the future it will prefer optrmal actions (i.e. our intelligent
cache system)

e Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a
model to generate reasonable predictions
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Machine Learning

Traditional Programming

Program

A machine learning approach to
detecting odd and even numbers,
such as using a binary
classification model trained on a
dataset of numbers and their
parity, differs from the standard
approach, which involves dividing

the number by 2 and checking the
remainder.




Machine Learning - Features

Features, also known as descriptors, are the mputl@- o 7
Varlables used to make predlctlons 4 Al ALY

In cheminformatics, features often mclude\ Al L 4
molecular weight, chemical structure and'physical:

properties. —

They can be calculated or experlmentaIIyU HWWNW == N
determined. ,
Careful selection of features is crucial for model =
performance.

Feature engineering techniques can improve
model accuracy.



Machine Learning

Regression

What will be the temperature
tomorrow?

0 0 MW W W 00 10 1D W WO 10 W0 1N M

Fahrenheit

Classification

Will it be hot or cold
tomorrow?

0 W %0 X M N W0 10 T 10 WO 150 180 T M0 MO M0 20 20 B

Fahrenheit

Features could be:
the day of the year
and the today
temperature

Label: is the
temperature for the
regression and
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Machine Learning

Machine !sgiiiing techniques can be divided into two foremost types:

o Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets ennsrstrng of mput data without Iabeled responses (i.e. clustering
aigerithms) P = —

o* Reinforcement learm“g the :lrmrli'th learn t(] react tU an en\llrnnment nn thaoir auwe Ao
agent is in a situation of trial and error, where the consequences of |ts actrons have an |mpact on
the environment and also on the problem’s goal The agent is punrshed or rewarded on the basis of
its behavior, with the idea that, in the future it will prefer optrmal actions (i.e. our intelligent
cache system)

e Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a

model to generate reasonable predictions
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Unsupervised Machine Learning

e Clustering: Clustering algorithms group similar data points together based on their
inherent structure or features. Some popular clustering methods include:

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

o “K-Means Clustering: Partitions data into 'K clusters, where each data point belongs

QT

« ato the cluster with the nearest mean/] | _ =
e Dimensionality Reduction: Teehnrques for reducing the number of features (dimensions)

in a dataset while retaining as mueh mformatren as possible. This can help with
visualization, noise removal, and |mpr0vrng the performance of other ML algorithms.
Some widely used methods are:
o Principal Component Analysis (PCA): Transforms data into a new set of uncorrelated
variables (principal components) that capture the maximum variance in the data.







Clustering K-means

Two-dimensional data can be easily wsuallzed e s

for intuitive understanding..

*K-means aims to m|n|m|ze W|th|n cluster
distance and maximize between cIuster
distance when we are eon3|der|ng [l

N-dimensional space.
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Clustering K-means

In k-means clustering, the objects are divided into several
clusters mentloned by the number K." So if we say K = 2, the

.................... hdokhddbddohd!

. - = ML B

o The features or characteristics are compared, and aII objects
having similar characteristics are clustered together./, ||

e The algorithm works by first randomly plcklng some central points
(called centroids) and then assigning every data point to the
nearest centroid.

e (Once that’s done, it recalculates the centroids based on the new
groupings and repeats the process until the clusters make sense
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Clustering K-means

Grouping Similar Data Points

K-Means is designed to cluster data points that share common traits, allowing

patterns or trends to emerge. -
- - —= ML ==

= TECHOLUG =

F

Minimizing Within-Cluster Dlstance SN o=
Keep data points in each group as close to the clusters centroid as possible

Maximizing Between-Cluster Distance
K-Means also aims to maintain clear separation between different clusters.



Clustering K-means: Example and Code

import matplotlib.pyplot as
import |
e X = []
y = []
for 1 in range(10):
X .append(random.randint(1,
y.append ( om. randint (1,

t.scatter(x, y)
.show()



Clustering K-means: Example and Code

Elbow method

from A” U_ A,_;””  import

data = (zipix, y))
inertias = []

for i in rai (L,11):

kmeans = K (n clusters=i)

kmeans.fit(data) \

inertias.append(kmeans.inertia ) e daes
.plot(range(1,11), inertias, marker='o')

.title('Elbow method') The elbow method shows that 3 is
.xlabel('Number of clusters') a good value for K, so we retrain
--ylabel("Inertia’) and visualize the result:

.Show()



Clustering K-means: Example and Code

inertia is a key concept that measures the compactness

of your clusters. Think of it as a way to quantify how

tightly grouped the data points are within each cluster =
Inertia is calculated by summlng the squared dlstanceS*
between each data point and its aSS|gned cluster center‘
(centroid). SR SR
Find the Elbow: Look for the point on the curve where
the rate of decrease in inertia starts to slow down
significantly. This point resembles an elbow, hence the

name "elbow method.




Clustering K-means: Example and Code

kmeans = (n clusters=3)
kmeans.fit(data)

.scatter(x, y, c=kmeans.labels )
.Show()

ZJ LN




Clustering K-means: Example and Code

.scatter(x, y, c=kmeans.labels )

.scatter(kmeans.cluster centers [:, 0], \
kmeans.cluster centers [:, 1], \
c='red')

.Show()
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Principal component analy3|s (PCA)
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Dimensionality Reduction:: PCA

Principal component analysis, or PCA, is a statistical procedure that allows you to

summarize the information content in large data tables by means of a smaller set

of “summary indices T M=‘

- e Prmclpal components are new variables that are constructed as linear

combinations or mixtures of the initial Varlables

e These comhinations are done in such a way that the new variables
(i.e., principal components) are uncorrelated and most of the
information within the initial variables is squeezed or compressed
into the first components

e Practically it consists on a diagonalization of the covariance matrix



Dimensionality Reduction:: PCA

How can you

observe from the figure, the
first principal component (PC
1) is in the direction

of maximum variance and its
origin is located in the
average value of the variable.
The residual variance is
represented by the second
principal component

(PC 2), in the direction
perpendicular to the first
component.



import pandas as pd

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"

features = ['sepal length', 'sepal width', 'petal length', 'petal width']
label = ['target']

allnames = []
allnames.extend(features)
allnames.extend|(label))

df = pd.read csv(url, names=allnames)
print(df.head())
print(df.columns)




Dimensionality Reduction:: PCA

UC Irvine Machine Learning Repository
The data set contains 3 classes of N mstances each, where each class
refers to a type of iris plant ‘/

- - ' *;i;;§ : A(
sepal length sepal ‘width petal length pe%gi width target
0 Dl 3D 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
i3 4.6 5 Sl S 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
Index(['sepal length', 'sepal width', 'petal length', 'petal width', 'targ
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from sklearn.preprocessing import StandardScaler

x = df.loc[:, features].values

y = df.loc[:,label].values
print{x[0:5])

print()

x = StandardScaler().fit transform(x)
print(x[p:51])




Dimensionality Reduction:: PCA

Scale the data so: mean = 0 and variance = 1
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[[-0.90068117 1.03205722 -1.3412724 -1.31297673]
[-1.14301691 -0.1249576 -1.3412724 -1.31297673]
[-1.38535265 0.33784833 -1.39813811 -1.31297673]
[-1.50652052 0.10644536 -1.2844067 -1.31297673]
[-1c ]

02184904 1.26346019 -1.3412724 -1.31297673]]



]

| RUN the PCA
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from sklearn.decomposition import PCA

|, columns = ['PC 1', 'PC 2'])

pca = PCA(n_components=3)
pcs = pca.fit transform(x)
pcsdf3d = pd.DataFrame(data = pcs
| y columpst = [FPEIL S HPEE2* NP 3]

finaldf2d = pd.concat([pcsdf2d, df[label]], axis
finaldf3d = pd.concat([pcsdf3d, df[label]], axis
print(finaldf2d.head())
print(finaldf3d.head())




Dimensionality Reduction:: PCA

Run the PCA

S~ W N =R O

~ W IN =R O

PN

. 264542
. 086426
.367950
.304197
.388777

PC 1

. 264542
.086426
.367950
.304197
.388777

<> B < i <> BN <> B <>
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PER2

.505704
.655405
.318477
975368
.674767

PC 2

.505704
.655405
.318477
2153068
.674767

target

Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

PC 3
-0.121943
-0.227251
0.051480
0.098860
0.021428

target

Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa



Use the PCA to represent the data (elustermg)



Dimensionality Reduction:: PCA

import matplotlib.pyplot as plt

fig = plt.figure(figsize = (8,8))

ax = fig.add subplot(1,1,1) {‘J{y
ax.set xlabel('PC 1', fontsize 15)

ax.set ylabel('PC 2', fontsize 15)
ax.set title('2D PCA', fontsize = 20)

stargets = set(df[label].values.flatten()) HOLUG
targets = list(stargets)

issert len( ) == i
cators = U'rr 1g', '] I

for target, color in zip(targets,colors):
indices = finaldf2d[label[0]] == target
ax.scatter(finaldf2d.loc[indices, 'PC 1']
, finaldf2d.loc[indices, 'PC 2']

— ® Iris-setosa
ACT COlO 7 @ Iris-virginica
S I=050 ) @ Iris-versicolor

plt.legend(targets, loc='lower left')
ax.grid()



Dimensionality Reduction:: PCA

fig = plt.figure(figsize = (8,8))
ax = fig.add subplot(11ll, projection='3d")

ax.set xlabel('PC 1', fontsize = 15) I; :Fﬁﬁif
ax.set ylabel('PC 2', fontsize = 15) 3
ax.set zlabel('PC 3', fontsize = 15) g
ax.set title('3D PCA', fontsize = 20) -
z
3
for target, color in zip(targets,colors): E:

indices = finaldf3d[label[0]] == target
ax.scatter(finaldf3d.loc[indices, 'PC 1']
, finaldf3d.loc[indices, 'PC 2']
, finaldf3d.loc[indices, 'PC 3']
¢ = coler
, S = 50)
ax.legend(targets)
ax.grid()

v/ 0.0s



Dimensionality Reduction:: PCA

print(pca2d.explained variance ratio )
[0.72770452 0.23030523]

print(pca2d.explained variance ratio .sum()) 0.9580097536148199
[0.72770452 0.23030523 0.03683832]

: : : . 0.9948480731910938
print(pca3d.explained variance ratio ) Jlll ; ; ;
print(pca3d.explained variance ratio_ .sum()) Explained Variance Ratio by Components
0.7
N=3
ind = np.arange(1,N+1) I_ 0.6
width = 0.25 LU |8
e 0.5
d2vals = list(pca2d.explained variance ratio ) o §
d2vals.extend([0]) ]II 8 04
plt.bar(ind, d2vals, width, color = 'r') s
d3vals = pca3d.explained variance ratio 203
plt.bar(ind+width, d3vals, width, color='g") s
w

0.2

plt.xlabel("Components")
plt.ylabel('Explained Variance Ratio')

plt.title("Explained Variance Ratio by Components")

©
=

o
(=]

plt:xticks(ind+(width/2);['PC 1', *PC 2", "PC 3%])
plt.show()
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Dimensionality Reduction:: PCA

Component-specific importance: This method provides the importance
of each feature within a specific principal component. A feature might

be important in one PC but less |mportant in another
5 ——= NAI =y

print(pca2d.components )
for 1 in range(pca2d.components .shape[0]):

print(“PC * ; 1+l1, "= %)
for j in range(pca2d.components .shape[l]):

print( " %6.2f"%(pca2d.components [1i,j]**2) ,\
§ ", features[j])



Dimensionality Reduction:: PCA

Component-cnecifie imnnrtanee: Thic methad nravidec the imngrtance

of each fe
be import;

print(p
for 1 1
pri
for

[[ 0.52237162 -0.26335492 0.58125401 0.56561105]
[ 0.37231836 0.92555649 0.02109478 0.06541577]]

' PC

PC

1

O OO ONOOOO

27
.07
.34
e 32

.14
.86
.00
.00

* K K K

* K X X

sepal
sepal
petal
petal

sepal
sepal
petal
petal

length
width
length
width

length
width
length
width

) might
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from sklearn.model selection import train_test split
from sklearn.linear model import LogisticRegression
from sklearn import metrics

test_split|(\

X train, x test, y train, y tes a1
. K., y, test_size=0.2; random_state=0))
= x_train.shapei@

trainsamples =
testsamples = x test.shape[0]

logreg = LogisticRegression() Pseudo Random
print(x train.shape) numbers seed
print(y train.shape)

logreg.fit(x train, y train.reshape(trainsamples))
y pred = logreg.predict(x test)

print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(\
| logreg.score(x test, y test.reshape(testsamples))))

v




from sklearn.model selection import train_test split
from sklearn.linear model import LogisticRegression
from sklearn import metrics

x_train, x_test, y_train, y_test = train_test_split|(\
. K., y, test_size=0.2, random_state=0))

trainsamples = x train.shape[0]
testsamples = x test.shape[0]
logreg = LogisticRegression()
print(x _train.shape)

print(y train.shape)

logrnn fit+lv +rain v train _rochanalt+raincamnlac))
y p (120, 4)
i} (120, 1)
Accuracy of logistic regression classifier on test set: 1.00




for n in range(1l, x.shape[l]+1):
x = df.loc[:, features].values
——y—=——dfleocltabelt]values
pca = PCA(n_components=n)
x_t = pca.fit_transform(StandardScaler().fit transform(x))
x_train, x test, y train, y test = train test split(\
 x_t, y, test_size=0.2, random_state=0)
trainsamples = x_train.shape[0]
testsamples = x test.shape[0]
print(x_train.shape)
print(y train.shape)
logreg = LogisticRegression()
logreg.fit(x train, y train.reshape(trainsamples))
y pred = logreg.predict(x test)
print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(
\ logreg.score(x test, y test.reshape(testsamples))))




for n in range(1l, x.shape[l]+1):
| df.locl:, £
.loc[:,label].values
= PCA(n_components=n)
pca fit transform(StandardScaler().fit transform(x))
x test, y train, y test = train test split

X t, y, testy
trainsamples = x_train.shape[@] :
testsamples = x_test.shape[0] Not the best option as we should scale,

print(x_train.shape) train the PCA only on the training set .

print(y train.shape) .
logres = Logistichaqression() See the afternoon exercise

logreg.fit(x train, y train.reshape(trainsamples))
y pred = logreg.predict(x test)

print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(
\ logreg.score(x test, y test.reshape(testsamples))))




in range(1l, x.shape[l]+1):

= df.loc[:, features].values

df.loc[:,label].values

pca = P
Xxt=p
x_train
x t
trainsa
testsam
print(x
print(y
logreg
logreg.
y pred
print(’
log

(120, 1)
(120, 1)
Accuracy
(120, 2)
(120, 1)
Accuracy
(120, 3)
(120, 1)
Accuracy
(120, 4)
(126 )
Accuracy

of logistic

of logistic

of logistic

of logistic

regression classifier on test set:

regression classifier on test set:

regression classifier on test set:

regression classifier on test set:




ML Introduction
Unsupervised techniques
Reinforcement Learning
Supervised Techniques :

Mumgmummu; |

& LR and PLS and RF and GPR/1 L

o Deep Learning =~ T TS

m NN

m CNN
o Interpretable ML
Working Examples

= .

g:
-E'i ,f/—
g;
5



Machine | earnino

Tommaso Tedeschi, Marco Baioletti, Diego Ciangottini, Valentina Poggioni,
Daniele Spiga, Loriano Storchi, Mirco Tracolli, "Smart Caching in a Data Lake
for High Energy Physics Analysis", Journal of Grid Computing, DOI:
10.1007/s10723-023-09664-z (2023)

i a——

algorithms ——— g/ ;
> neinforcement Learning: the algorlthms learn to react to an environment on thelr own. An

SN T T

agent is in a situation of trial and error, where the consequences of |ts actions have an impact on

3 SO ——

the environment and also on the problems goal. The agent is pqnlﬁhgd or rewarded on the basis of
its behavior, with the idea that, in the future, |t WI|| prefer optlmal actions (i.e. our intelligent
cache syswem) :

e Supervised: used when you want to preaict or expiain the aata you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a

model to generate reasonable predictions




Reinforcement Learning: Q-Learning

Reinforcement Learning lies between the spectrum of Supervised Learning and
Unsupervised Learning,. How does Reinforcement Learning work in a broader

sense ?

Addd AL AL LLLLALLLLLLLLT —

—— =
\ = = =
‘- —

An "agent’ is exposed te the environment -

T~ ot~ v~

The situations they encounter are states__ ?

Our agents react by perfermmg an action to transition from one "state" to
another "state,”

After the transition, they may receive a reward or penalty in return

The policy is the strategy of choosing an action given a state in expectation

of better outcomes.



Reinforcement Learning: Q-Learning

Environment

States ACTION

— _

Rewards




Reinforcement Learning: Q-Learning

Environment

States REWARD

Actions

Rewards




Reinforcement Learning: Q-Learning

Several approaches
1. Value-Based Methods , (0
e
2. Pollcy Based Methods S ,
~3.Model-Based Methods = NAL. =

TECHOLUE
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| will give you a quick overview about one of the Value Based Methods that is
the:

Q-Learning: A model-free approach where an agent learns an action-value
function (Q-function) that estimates the expected reward for taking a given
action in a given state.



Reinforcement Learning: Q-Learning

Simple example (no code)
/A robot has to cross a maze and

...-- ““““reach the end point. There are mines,
- -E..E. I\./land the robot can only move one tile
CCCCC at a time. If the robot steps onto a
[ mine, the robot is dead. The robot
~has to reach the end point in the
shortest time possible.




Reinforcement Learning: Q-Learning

Simple example (no code) e The robot loses 1 point at each
step. ( force the robot to take the

...-. I\h;; Ishortest path).
) Mine, the point loss is 100 and th
o —

------------

pomt
e |[f the robot reaches the end goal,
the robot gets 100 points.




Reinforcement Learning: Q-Learning

paors: T = | The Q-Table, the columns are the
| actions and the rows are the states.
e Actions Space: 4 possible actions
I\/move up, down, left or right
TECHStates space: 5 state start,
Power [T nothing (blank square), power,
mine, end
e Rewards: loss 1 for each step,
loss 100 for mine, gain 100 for
end , gain 1 for power

Start

Nothing / Blank

Mines

END
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Reinforcement Learning: Q-Learning

Initialize Q-table
l

Choose an action
l

Perform action

After a lot of Iterations, l
a good Q-table is ready

Measure reward
|

Update Q-table
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Initial Q Table and how to chooSe an actlon
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Reinforcement Learning: Q-Learning

e Initialize the Q values:, randomly, in
|, this example we will initialize all

- values to zero
N\e/1 Choose an action (a) in the state (s)

TECHOLbased on the Q-Table

---------------

t 11167 One can use different strategies
to select the best action
o in this case the action is chosen
randomly using epsilon greedy
strategy




Reinforcement Learning: Q-Learning

if random() < €
random action _ LD mlr 4
otherwise = E—

==

*  action = argmax(ﬂ(state a)) for all actlonsa

LLLLLLLL
——F §7 =

T I e T Ty A ) [
argmax(Q(state, a)) for all actlons a: This part calculates the action with the

highest Q-value in the current state



Reinforcement Learning: Q-Learning

if € = 0.1 (10% chance of exploration)., so

| 90% of times we select the best action

accordlngly to 1o argmax

"“if we are in state 0 = Start in this case
clearly the best action is Right -~
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Reinforcement Learning: Q-Learning

Bellman equation

Q(s, a) = Q(s, a)+a[R(s a)+y maX(O(s a)) - Q(s, a)]

Aok ddokdod dohd ok

- - | ML |
TECHOLUa (alpha) The learning rate (a
Q(s, a): The current T mvalue between O and 1). It 4
Q-value for taking determines how much we update
action a in state s. the Q-value based on new

information. A higher learning rate
means bigger updates.



Reinforcement Learning: Q-Learning

Q(s, a) = Q(s, a) + o [R(s, a) + y * max(Q(s', a)) - Q(s, a)]

h‘;;s‘;u‘ﬂ;.&xﬁn‘lﬁhm.!l

- = VI
¢ reenotvy (gamma): The discount factor (a
R(s, a): The *‘?‘?TfT*j'L‘"T’TTT*U":"vaIue between 0 and 1). It determines
immediate reward ~ —— how much we value future rewards
received after compared to immediate rewards. A
taking action a in higher discount factor means we care

state s. more about future rewards.



Reinforcement Learning: Q-Learning
Q(s, a) = Q(s, a) + o [R(s, a) + y * max(Q(s', ) - Q(s, a)]

Ll L ‘m.uH,..; s
*f TECHOLUS The new state the agent transitions
max(Q(s', a)): The maximum 7777777771 Rl 'to after taking action a in state s.
Q-value for the next state (s') 7
after taking action a. This
represents the hest possible

outcome we expect in the future.




Reinforcement Learning: Q-Learning

Current state (s): 0

| Action (a): Up

State 0 : ““Reward (R(s, a)): 1 (let's say it gets a small
State 1 preward for moving up)

"*Next state (s): 1

State 2 (Learning rate (a): 0.1 ('.

~ - Discount factor (y): 0.9

State3 7| - Current Q-value (Q(s, a)): 10 (from the
Q-table)

max(Q(s, a)): 12 (the highest Q-value in
state 1is for action "Right")

State 4



Reinforcement Learning: Q-Learning
0((0, 0), Up)=10+0.1[1+ 0.9 *12-10]

| =10+0.1*18
State 0 . ] “ =10.18
State 1 i ML!E 5 ,

State 2

State 3

State 4
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o Interpretable ML
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Machine Learning

Machine learning techniques can be divided into two foremost types:

Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets ennsrstrng of mput data without Iabeled responses (i.e. clustering
algorithms)» = - —

Reinforcement Learning: the algorithms learn to react to an enwronment on their own. An
agent is in a situation of trial and error, where the consequences of |ts actrons have an impact on
the environment and also on the problem’s goal The agent is punrshed or rewarded on the basis of
its behavior, with the ide2 *hat, i e Tuture, it will prefer optimal actions (i.t. vui into!lioent
cache system)

Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a
model to generate reasonable predictions

LI I
um

r




Supervised Machine Learning

Regression

What will be the temperature
tomorrow?

D WV 0 0 0 MW W M W0 D W WO 10 WO 1 180 10

Classification

Will it be hot or cold
tomorrow?

Fahrenheit

W % 8 N M 0 00 10 10 N0 WO 10 180 1 MO WO W0 20 20 D

Fahrenheit

Features could be:
the day of the year
and the today
temperature

Label: is the
temperature for the
regression and




Machine Learning

Supervised: used when you want to predict or explain the data you possess. A supervised algorithm takes a

known set of input data and known responses to the data (output) and trains a model to generate reasonable
AL

predictions =
—— oV -
& -Ez;ﬁ/;j 7 Y _ Fa,b’c (X)
Build Model Q"T N ®
' % S s (‘ o Labels: dependent Features (descriptors):
F(X1, X2)=Y variables (e.g. pK. independent variables
values , could be also a (e.g. Molecular weight,
< 1, class pass or not the fingerprints )
B =
F’rcd ct Models: Linear Regression,

Random Forest, Artificial
Neural Network , Partial Leat
Square

Mew Data Use “odel




STRUGTURED DATA

Machine Learning / Al
CNN (2D and 3D images so arrays)
INPUT ARE NUMBERS I LuReeurrent NN (sequence has they have hidden
- - -memory)
*  ILinear regression 5 NL =
PLS *t 1 (B S Graph NN (Graphs, e.g. molecules)
PCR S T

Decision Trees 2 “‘ Il

Transformers (sequence but paraIIeI the
Random Farragt

decoder is somehow “generating” the output

Neural Network
GAN Generative Advesal Network



ML Introduction
Unsupervised techniques
Reinforcement Learning
Supervised Techniques :

Mumgmummu; |

® LR and PLS and RF and GPR/1 L

o Deep Learning =~ T TS

m NN

m CNN
o Interpretable ML
Working Examples
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Linear Regression

“Implementing linear regression of
..'some dependent variable y on the
I_set of independent variables x = (x1,
Lo Xr), Where 7 is the number of
-predictors, you assume a linear

" relationship between y and x: y = o
Pt Brxr te.




df sal = pd.read csv('Salary Data.csv')
df sal.head()

v 0.0s 8 Open 'df_sal'in Data Wrangler

YearsExperience Salary
1.1 39343.0
1.3 46205.0
1.5 3771321.0
2.0 43525.0
2.2 39891.0




Linear Regression

plt.scatter(df sal['YearsExperience'], \
df sal['Salary'], color = 'lightcoral')

plt.title('Salary vs Experience')
plt.xlabel('Years of Experience') Salary vs Experience

plt.ylabel('Salary'
plt.show()

120000

100000

ZUUJ )|

Years of Experience




df sal.ilaoc[:z, :1]
= df sal.ilogf:, 1:]
_train, X test, y train, y test = train test split(X, y, \
| ~ test size = 0.2, random_state = 0)
regressor = LinearRegression()
regressor.fit(X train, y train)
print(f'Coefficient: {regressor.coef }')

print(f'Intercept: {regressor.intercept }')
y pred_test = regressor.predict(X_ test)
y pred train = regressor.predict(X train)

Coefficient: [[9312.57512673]]
Intercept: [26780.09915063]




Linear Regression

plt.scatter(y train, y pred train, color = 'red')
plt.scatter(y test, y pred test, color='blue')
plt.title('Scatterplot')
plt.xlabel('True Values')
plt.ylabel('Predicted Values') 120000
plt.show() 100000

Scatterplot

80000

=
o
>
o
U
=
2
°
v
a

60000

40000

40000 60000 80000 100000 120000
Tue Values




Linear Regression

R% measures how well the
regression line fits the data points.
umnm,‘.ulmimf
RMSE stands for Root Mean Squared
TEcHoError It's a common metric used to
""""" 1mevaluate the accuracy ofa
| regressmn model, or more generally,
to measure the difference between
predicted values and actual values.




from sklearn.metrics import r2 score

from sklearn.metrics import mean—Ssguared—error

r2 train = r2 score(y train, y pred train)

r2_test = r2 score(y test, y pred test)

rmse _train = np.sqrt(mean—sguared—error(y train, y pred train))
rmse test = np.sqrt(mean—sguared—error(y test, y pred test))
print(f'R2 traint {r2 train}')

print(f'R2 test: {r2 test}') R2 train: 0.9411949620562126
print(f'RMSE train: {rmse train}') R2 test: 0.988169515729126
print(f'RMSE test: {rmse test}') RMSE train: 6012.459573099956
¢ RMSE test: 3580.979237321345







Partial Least Squares Approach

It is a linear relation but instead of the
pure X variables we are using LV (Latent
Variables) similar to PCR (Principal
l Components Regression) but LV are build
to “better correlate” also to Y variable
respect to PC (Principal Components).




Partial Least Squares Approach

 used to
‘% The hyperparameter here is represented by the °

number of latente variables used emoved (eg.
Itis a lin the number
e d looking for
{)Prtirg:lipa set while
u dl'c vunu W VGLLEGI LUTIGIALG . .
also Y variable respect to PC increasing the number of LV (Latente

(Principal Components).

Variables)



Partial Least Squares Approach

Both PLS and PCR perform multiple linear regression, that is they build
a linear model, Y=XB+EY=XB+E- il

n PCR (Principal Component Regression)) the set of measurements XX
is transformed into an equivalent set X'=XWX'=XW by a linear
transformation WW, such that all the new ‘features (which are theg,
principal components) are linearly independent.

PLS is based on finding a similar linear transformation, but
accomplishes the same task by maximising the covariance between YY
and X'X



df = pd.read csv('./data/fingerpls.txt', sep=' ', header=None)
print(df.head())

= df.iloc[:, 1:-1].values

= X.astype(float)

= df.iloc[:, -1].values 47748 2

71274 4

print(X.shape) 99679 2

126628 1

print(y.shape) 127995 1

3023 3024 3025 3026 3027 3028 3029 303 3031
0 0 0 0 0 0 -2.87789
-4.41142

-0.99876

-3.92674

-2..63751

[5 rows x 3032 columns]
(207, 3030)
(207,)




Fingweorints

The molecular environment is described by a tree-structured molecular fingerprint with a
length of 10 bond distances eI

NN—
—

& | ML
. ‘ = TECHOLUG
© 1 8 N 3H 122 =
1 2 9C.3326 11 C.3 326 R
2 2 12C.3 629 160 C.3 629 )
3 1 7 N.3ar 1016
4 1 5 C.ar+ 1250
5 2 4 NPYM 1766 6 NPYM 1706
6 2 3 C.ar+ 1856 1 C.ar+ 1856




Fingweorints

The If we consider 10 atom types and a fingerprint with a depth of 7

leng’

00



Partial Least Squares Approach

Cross validation K-folds:

e [ata Sphttmg \ _ hixmﬂdm.ﬂll Ul
_ 0 “the dataset is randomly divided into K equal 3|zed parts (folds).
. Tralnlng and Testing: & "ectoloe ;

o The model is tralned K separate times.
o In each iteration, K-1 folds are used for tralnlng the model, and the
remaining 1 fold is used for testing.
This way, each fold gets a chance to he the test set while the rest
are used for training.



Partial Least Squares Approach

Performance Evaluation:
g A mﬂdm;..ﬂh mlr 4

e For each iteration, a performance metric (e g., accuracy, precision,
recal, RMSE) is calculated on the held- cut test fold.

e This results in K performance scores.q

e The final performance score is generally calculated by averaging the K
individual scores. This provides a more robust estimate of the model's
generalization performance compared to a single train-test split.




mses []
r2s =1
percdiff = []
pls = PLSRegression(n_components=n)
y pred = cross val predic n@ X, y, cv=10)

mse = mean—sguared—error(y, nred)

rZ = rz2 scorely, y pred ‘
mses.append(mse)

r2s.append(r2)

ifoni> 1

\ percdiff.append((mses[-2] - mses[-1]) / mses[-2] * 100)
else:

| percdiff.append(100)




Partial Least Squares Approach

plt
plt
plt
plt

plt
plt

.plot(range(1l, 20), mses, label='MSE')
.plot(range(1l, 20), r2s, label='R2'")
.legend()

.show()

.plot(range(1l, 20), percdiff, label='Percentage di
.legend()
plt.

show ( ) —— Percentage difference




h splitting the dataset into the Training set and Test set

from sklearn.model selection import train test split

X train, X test, y train, y test = train_test split(X, y, test size = 0.2, \
- random_state = 0)

# build a PLS model using 12 components

pls = PLSRegression(n_components=11)

pis.fit(X train, y train)

y pred test = pls.predict(X test)

msetest = mean—Sguared—error(y test, y pred test)
r2test = r2 score(y test, y pred test)

y pred train = pls.predict(X train)

msetrain = mean—sguared—error(y train, y pred train)
r2train = r2 score(y train, y pred train)




Partial Least Squares Approack

plt.scatter(y test, y pred test, color='blue')
plt.scatter(y train, y pred train, color='red')
plt.title('Predicted vs True values')
plt.xlabel('True values')

print('MSE test:', msetest)

print('R2 test:', r2test) 2
print('MSE train:', msetrain) %
print('R2 train:', r2train) §

plt.ylabel('Predicted values') hf3|
plt.show() e values

Maybe decrease the MSE test: 0.36049041720894454
number of components, use R2 test: 0.8382020928663912

a validation set to compare ~ MSE train: 0.014821067700162026 Qutlier

R2 and MSE the results etc R2 train: 0.992527008294187
etec
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Decision Tree

Imagine you're trying to decide whether to
go to a party. You might con3|der factorsliLl
Ilke - =

- f,f; = N L

IRE € 5 @181

1. Weather: [s it ralnmg or sunny
2. Friends: Are your friends gomg? mﬂ
3. Time:Is it a weeknight or weekend?

You could use a decision tree to map out
your decision-making process

-------------

Friends going? Friends going?
| | I |

——————————————— Yes No

Yes \[o) No Go

| I |
Go Stay Stay

Stay home



Decision Tree

Decision tree training: Individual decision trees within an RF are built using
algorithms that recursively partition the data based on features to generally
minimize an impurity measurement as the Gini impurity.

where p, is the proportion of samples in the node that belong to class k, and K is
the total number of classes



Random Forest Approach

e Imagine you have a complex problem to solve, and you gather a group of
experts from different fields to provide their input. Each expert provides their
opinion based on their expertise and experience. Then, the experts would vote
to arrive at a final decision, 1MIL. = [«

e Inarandom forest classmcatlon multiple decision trees are created using
different random subsets of the data and features. Each decision tree is like
an expert, providing its opinion on how to classify the data.

e Predictions are made by calculating the prediction for each decision tree and
then taking the most popular result. (For regression, predictions use an

averaging technique instead.)



Random Forest Approach

Bootstrapping: =

;_ AL =
Sampling with Replacement: Bootstrapping involves creating random samples
“from the original dataset with replacement. This means that some data points may
appear multiple times in a single bootstrap sample, while others might be left out.
Multiple Samples: For each tree in the random forest, a new bootstrap sample is
created. So, each tree sees a slightly different version of the training data

Random forests use different sets of features for each tree
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Matrics to be used in case of classn‘lcatlon
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Random Forest Approach

Here we will build a classification model so let’s define some metrics:
True Positive (TP): The model correctly predlcted spam, and it was

actually spam. = BNV I —
True Negative (TN): The model correctly predlcted not spam, and it
was actually not spam. @

False Positive (FP) (Type I Error) The model predicted spam, hut it

was actually not spam (a false alarm).
False Negative (FN) (Type Il Error): The model predicted not spam,

but it was actually spam (a missed detection).



Random Forest Approach

Confusion Matrix

B AL =

C =
=

Predicted Class1  Predicted Class 0
Truly Class 1 |True Positive (TP) False Negative (FN)

_—

Truly Class 0 |False Positive (FP)  True Negative (TN)



Random Forest Approach

Recall = TP / (TP + EN) essentially measures the ability of a
classifier to find all the positive instances in your datase
Accuracy = (TP +TN) / (TP + TN + FP + EN) is a common
metric that measures the overall correctness of a model's

"predictions o
Precision = TP / (TP + FP)evaluating the performance of a
classifier, particularly when you want to minimize false
positives




df = pd.read csv('./data/bbb.csv', sep=";")

df = df[df['Objects'].str.contains(' c0')]

df['Objects'] = df['Objects'].str.replace(' c0', '")

df label = pd.read csv('./data/bbb label.csv', sep=' ', header=None)

# give a name to the columns

df label.columns = ['Objects', 'label']

# select only row with the same name as in the label file
df = df[df['Objects'].isin(df label['Objects'])]

df = df.set index('Objects')

df label = df label.set index('Objects')

# add all in a single dataframe

df = df.join(df label)

print(df.head())




df = pd.read csv('
df = df[df['Object
df['Objects'] = df
df label = pd.read
# give a name to t
df label.columns =
# select only row !
df = df[df['Object
df = df.set index(
df label = df labe
# add all in a sin
df = df.join(df la

Objects

MOL 0001
MOL 0002
MOL 0004
MOL 0009
MOL 0012

Objects

MOL 0001
MOL 0002
MOL 0004
MOL 0009
MOL 0012

Objects

MOL 0001
MOL 0002
MOL 0004
MOL 0009

482.581
637.0629
368.758
414.276
316.626

W5

.21149
.33090

G

L4LgS

.067867
.137969
012077
.315401
.158180

0

0

DD8 Tlabel

.500
=375
.000
.750

Wl

.33424 1098.380
.58788 1294.120
798.000
898.375
.17786  692.250

DD1

.750
875
.000
.500
.000

W2

579.750
597.500
324.500
406.875
323.000

DD2

32.500
37.500
0.000
20.125
0.000

print(df.head())




GRID Force-Fields

o GRID program: a computational procedure for determining energetically favourable binding sites on

molecules for functional groups of known structure through the use of PROBES.
o  The PROBE is moved through a grid of points superimposed on the target molecule (to each atoms of the target and

‘@mType is assigned) . Its interaction energy with the target molecule is computed by an empirical energy

» e DO = B\V/I . ——
E, = Lennard-Jones potential E,.= hydrogen bonding interaction energy E,=

EXYZ = E[ELJ] + E[EHB] + EE[EQ] + [S]“Lelectrostagc function $= entropic term

A




Volsurf Descriptors

W1-W§
ID1-108

Descripeion

Molecular volume
Molecular surface
Palanzabiity

Molar mass
Hydrogen bonding
Amphiiphulic moment

Best volumes 3
Hydrophilic regions

Hydrophobic integy mament

Capacity factor

Hydrophobee regions

Critical padaing

oganithm of partition coefficen

Duffusiviey

* Blank, ather ways of caloddation, Fordeatails, see reference Crucian: o al (20000



(2103, 128)
(2103, 68)

= df.drop('label', axis=1)
X.fillna(0)
df['label']
print(X.shape)
CORRCUT = 0.95
corr matrix = X.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr matrix.shape), \
- k=l).astype(bool))
to drop = [column for column 1in upper.columns 1Tt any(upper|column| > CORRCUT) ]
X = X.drop(X[to drop], axis=1)
print(X.shape)




X train, X test, y_ train, y test = train test split(X, y, \
test size=0.2, random state=42)

accuracys =
numoftrees =

for numofest in féﬁééil 100, 10): >

rf = RandomForestClassifier(n estimators=numofest, random state=42)
rf.fit(X train, y train)

accuracys.append(acc)

y pred = rf.predict(X test)
acc = accuracy score(y test, y pred) _
the best hyperparameters

numoftrees.append(numofest)
#print(f"Accuracy for {numofest} trees:", accuracy)




import matplotlib.pyplot as plt

plt.plot(numoftrees, accuracys)
plt.xlabel('Number of Trees')

plt.ylabel('Accuracy')

plt.title('Accuracy vs Number of Trees')

plt.show()

print(“Max Accuracy:", max(accuracys))

bestnoftrees = numoftrees[accuracys.index(max(accuracys))]
print("Number of Trees:", bestnoftrees)




Random Forest Approach

Accuracy vs Number of Trees

1mport matplotlib.py
plt.plot(numoftrees,
plt.xlabel('Number o
plt.ylabel('Accuracy
plt.title('Accuracy )
plt.show()

print("“Max Accuracy:
bestnoftrees = numof;
print("Number of Tre«

Number of Trees

Max Accuracy: 0.8266033254156769
Number of Trees: 71



rf = RandomForestClassifier(n estimators=bestnoftrees, \
| | | | - random_state=42)
rf.fit(X train, y train)

# print out the max detpth used in the trees
print("Max Depth:", rf.max depth)

y pred = rf.predict(X test)

print("Accuracy:", accuracy score(y test, y pred))
print("Confusion Matrix:")

print(confusion matrix(y test, y pred))
print("Precision:", precision score(y test, y pred))
print("Recall:", recall score(y test, y pred))

# the same for the training set

y pred train = rf.predict(X train)

print("Accuracy on training set:", \

| accuracy score(y train, y pred train))
print("Confusion Matrix on training set:")
print(confusion matrix(y train, y pred train))
print("Precision on training set:", \

| precision score(y train, y pred train))
print("Recall on training set:", \

| recall score(v train. v pred train))




rf = RandomForestClassifier(n estimators=bestnoftrees, \

FfoFAE(XER
# print out
print ("Max
y pred = rf
print("Accu
print("Conf
print(confu
print("Prec
print("Reca
# the same
y pred trai
print("Accu
accur
print("Conf
print(confu
print(“Prec
preci
print("Reca

= Y

Max Depth: None Tree growth: Each tree in

Accuracy: 0.8266033254156769 the forest will be allowed

Confusion Matrix: to grow until all leaves

[[ 43 58] are pure (all data points
[ 15 305]] in a leaf belong to the

Precision: ©.8402203856749312 | Same class) possible

Recall: 0.953125 SHENDNG

Accuracy on training set: 0.9994054696789536

Confusion Matrix on training set:

: { 35; 132411} ] not a balanced set

Precision on training set: 0.999245283018868
Recall on training set: 1.0

e



testaccuracy = []

trainaccuracy = []

for maxdepth in range(1, 10):

rf = RandomForestClassifier(n estimators=bestnoftrees, \

max depth=maxdepth, \
random_state=42)
rf.fit(X train, y train)
y pred = rf.predict(X test)
testaccuracy.append(accuracy score(y test, y pred))
y pred train = rf.predict(X train)
trainaccuracy.append(accuracy score(y train, y pred train))




plt.plot(range(1l, 10), testaccuracy, label='Test')
plt.plot(range(l, 10), trainaccuracy, label='Train')
plt.xlabel('Max Depth')

plt.ylabel|(|'Accuracy'))

plt.title('Accuracy vs Max Depth')

plt.legend()

plt.show()

bestdepth = testaccuracy.index(max(testaccuracy))+1
print ("Max Accuracy:", max(testaccuracy),\

| | "Max Depth:", bestdepth)




Randon Accuracy vs Max Depth

plt.plot
plt.plof
plt.xlal
plt.ylat
pLt. it}
plt. lege
P Lt.shoy Max Depth

bestdepf
print ('Max Accuracy: 0.836104513064133 Max Depth: 6




rf = RandomForestClassifier(n _estimators=bestnoftrees,
max_depth=bestdepth, \
random state=42)

rf.fit(X train, y train)

y pred = rf.predict(X test)

print("Accuracy:", accuracy score(y test, y pred))
print("Confusion Matrix:")

print(confusion matrix(y test, y pred))
print("Precision:", precision score(y test, y pred))
print("Recall:", recall score(y test, y pred))

# the same for the training set

y pred train = rf.predict(X train)
print("Accuracy on training set:", \

| accuracy score(y train, y pred train))
print("Confusion Matrix on training set:")
print(confusion matrix(y train, y pred train))
print("Precision on training set:", \

‘ precision scorelv train v nred train))

print("Recall on trai (variable) y train: Any
~ recall score(y train, y pred train))




Accuracy: 0.836104513064133
f.fit(x 4 Confusion Matrix:
y_pred =1 [T 37  64]

print("Acc

print("Con [ 5 315]]
print(conf pracision: 0.8311345646437994

print("Pre

print("Re¢ Recall: 0.984375
" red ol Accuracy on training set: 0.9078478002378121

y pred tre
print("Acd Confusion Matrix on training set:

NI 204 154]

print("Cor

print(conf [ 1 132311
print("Pre

orec Precision on training set: 0.8957345971563981
print("Red Recall on training set: 0.9992447129909365

re




for-i-in range(3):
--tree-=-rf.estimators [i]
- dot_data = export_graphviz(tree,

- feature names=X train.columns,

--filled=True, - -

- max_depth=2,

--impurity=False, -
...........................proportion:True)

- -graph = graphviz.Source(dot data)

- ~display(graph)




Random Forest Approach

W8 <= 8.812
samples = 29.8%
value = [0.49, 0.51]

T

DD1 <= 103.438 %FU10 <= 0.0
samples = 21.7% samples = 8.1%
value = [0.403, 0.597] value =[0.77, 0.23]

/. \ [\

)







Gaussian Process Regression

Gaussian Process Regression (GPR), predictions are based on the

similarity between points. e e

- =5
,: = =
———= e —— =

=" NAI 3

‘Kernel Function: The core of GPR is the kernel function, which
defines the similarity or covariance between data points. This,
function determines how much information is shared hetween
points — points that are more similar according to the kernel will
have more influence on each other's predictions.




Gaussian Process Regression

Prediction Process: When making a prediction for a new point, GPR
considers the similarity between that new point and all the points in the
training data. Points that are more similar to the new point (according to
the kernel) will have a greater welght in determlnlng the prediction.
T -
Imagine you're trying to predlet the temperature at a new location. You
have temperature readings from several nearhy weather stations. In

GPR. the kernel function would he like a measure of how close the new
location is to each weather stations




import pandas as pd
import numpy as np

df = pd.read csv('data/surface.csv')

df = df.drop('dE', axis=1)
print(df.shape)
print(df.head()))




import pandas as pd

(40, 71)

import nump o\

df = pd.rea
df = df.dro
print(df.sh
print/(df.he

1
2
3
4
5

5.420000e-15
1.200000e-14
2.000000e-14

100
4.670000e-17
1.050000e-16
1.790000e-16
2.710000e-16
3.850000e-16

600

1.030000e-14
2.270000e-14
3.760000e-14

200
1.850000e-16
4.160000e-16
7.010000e-16
1.050000e-15
1.470000e-15

700

1.780000e-14
3.930000e-14
6.480000e-14

300
5.200000e-16
1.170000e-15
1.960000e-15
2.930000e-15
4.110000e-15

800

1.220000e
2.720000e
4.560000e
6.790000e
9.490000e

900

2.860000e-14
6.260000e-14
1.030000e-13




df[vAT!]
df.columns[1:]

[int(t) for t in T]
v = [int(v) for v in v]
print(v)
print(T) X, Yy = np.meshgrid(T, v)
print(x.shape)
print(y.shape)
z = np.array(df.iloc[:,1:])

print(z.shape)



di[SvAT" ]
df.columns|[1:]

LS 250 3,0 4,005,806, 8750 8,0 9,810, 811, 12,0003 8 14, 815,516,017, 218,519
[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 13
(40, 70)
(40, 70)
(40, 70)

print(y.shape)
z = np.array(df.iloc[:,1:])
print(z.shape)



fig = plt.figure()

fig.set size inches(12, 12)

ax = fig.add subplot(11ll, projection='3d")
ax.scatter(x, y, z, color='b")

ax.set xlabel('T (K)')

ax.set ylabel('v (quantum number)"')
ax.set zlabel('k (cm™3/s)')
plt.show()




Gaussian Process Regression

Na(v) + H2(0) — Na(v — Aw)

+H5(0), Av=1,23. )

1g.s5el size 1ncnes(12

" ax = fig.add subplot(1
ax.scatter(x, y, z, ca
ax.set xlabel('T (K)")
ax.set ylabel('v (quan

ax.set zlabel('k (cm™3
plt.show()




(2800, 2) [160 1]
x.reshape(-1) (2800,) 4.67e-17

y.reshape(-1) (2520, 2) (280, 2} (2520,)" (280,)
np.column stack((t, v))

= z.reshape(-1)

print(X.shape, X[0])

print(Y.shape, Y[0])

X train, X test, Y train, Y test = train test split(\
X, Y, test size=0.1, random state=42)

print(X train.shape, X test.shape, Y train.shape, Y test.shape)
0.2s




kernel = 1.0 * Matern(length scale=1.0, nu=2.5)

gpr = GaussianProcessRegressor(kernel=kernel, n restarts optimizer=10,\
| normalize y=False, random_state=42)
gpr.fit(X train, Y train)

Y pred, Y std = gpr.predict(X test, return std=True)

rmse = np.sqrt(mean—saquared—error(Y test, Y pred))

r2 = r2 _score(Y _test, Y pred)

print("RMSE %6.2e, R2 %6.2f" % (rmse, r2))

plt.scatter(Y test, Y pred)

plt.xlabel('True values')

plt.ylabel('Predicted values')

plt.title('Gaussian Process Regression')

plt.show()




Gaussian Process Regression

RMSE 3.41e-11, R2 0.86

kernel = 1.0 *
gpr = Nk

| gpr.fit(X trair

Y pred, Y std =

rmse = np.sqrt(

r2 = r2 score()

print ("RMSE
)Lt.scatter(Y t
.Xlabel('Tru
t.ylabel('Pre
.title('Gaus
)yLt.show()

w
v
2
o
>
©
O
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©
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Gaussian Process Regression

05 10 15 20 25
Tue values

30

35
le-10

is optimizer=10,\
ym state=42)



print(np.min(Y_ test), np.max(Y test))
print(np.min(Y pred), np.max(Y pred))

v/ 0.0s

1.05e-16 3.35e-10
-8.452855806257396e-11 2.655611032996181e-10




Y trainL = np. 10910(Y tra1n)

arnet——1.0_* Ma wgth scale=1.0, nu=2.5)
gpr = Gau551anProcessRegressor(kerne1=kerne1, n restarts optimizer=10,\
| normalize y=False, random state=42)
gpr.fit(X_train, Y trainL)

Y predL = gpr.predict(X test
Y pred = 10*%*Y predL

o = nn_sq m auarea—error(Y test, Y pred))
r2 = r2_score(Y_ test Y _pred)
print("RMSE %6.2e, R2 %6.2f" % (rmse, r2))
plt.scatter(Y_test, Y pred)
plt.xlabel('True values')
plt.ylabel('Predicted values')
plt.title('Gaussian Process Regression')
plt.show()




Gaussian Process Regression

o .o _ | RMSE 6.02e-13, R2  1.00

kernel = 1.0
gpr =

Gaussian Process Regression limizer=10,\

ite=42)
gpr-Fit(X tr
Y predL = gp
Y pred = 10%*
rmse = .SqQ
r2 = r2 scor
print("RMSE
.scatter(
.xlabel ("'
.ylabel ("'

.ti‘tle('G 00 05 10 15 20 25 30 35
Tue values le-10
.Show()

w
v
=
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>
=
O
-
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print(np.min(Y_test), np.max(Y_test))
print(np.min(Y pred), np.max(Y pred))

v/ 0.0s

1.05e-16 3.35e-10
1.0112154496134055e-16 3.348786030775483e-10
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Deep Learning

Deep learning techniques involve training artificial neural
networks with multiple layers (hence "deep”) to learn complex

Jatterns and representations from data-
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ML Introduction

Unsupervised techniques

Reinforcement Learning

Supervised Techniques ¢ =

& LR and PLS and RFand PRAL =

o Deep Learning = T
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Artificial Neural Network

There are three layers in

the network architecture: -
‘the input layer, the hidden
layer (more than one), and
the output layer. A typical
feedforward network 0
processes information in .
one direction, from input input Layer\\:{y 7 DilGae
to output. |

Feed-forward




Artificial Neural Network

Weighted Sum: The neuron receives input signals from other
neurons or from the innut layer. Each input signal is

'multipliedbya ~ , and these welghted inputs are
summed together. — f .e. F
UGS T
they are
updated
during the

training



Artificial Neural Network

Bias: A bias term is added to the weighted sum. This
allows the neuron to shift the actlvatlon function and

ECHOLUG 2;%— :

learn more complex patternsM . —

€ =

they are
updated
during the
training




Artificial Neural Network

Activation Function: The activation function is applied to the sum
of the weighted inputs and the bias. This function introduces
non- -linearity into the network enabling it to learn complex relationships

1 WV 1 L

In the data ;jg TECHOIUG ;\

gt




Artificial Neural Network

The activation
function is important
for two reasons: first, Ak
it allows you to turn . (A

on your computer. it Maxout
contributes to the tanh(z max(wle + by, wlz + bo)
conversion of the )
/ ELU J
x z >0
{a-(c“” -1) z<0 - # 0

Activation Functlons

Leaky ReLU )
max(0.1z, z)

input into a more ReLU
usable final output. max(0, z)




Artificial Neural Network

Output: The output of the activation function is the neuron's output,

which is then passed on to other neurons in the next layer.
- = i
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Artificial Neural Network

How the weights change during training

h u,uAL‘; AMA.JML;M.L!

[nitialization: Imtlally, the weights are asmgned random values.

1 WV 1 L
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Artificial Neural Network

Forward Pass: The input data is fed through the network, and the
activations of the neurons are calculated Iayer by layer. This
Jrocess produces an output R —

I VAN B =

- —§ TECHOLUG =




Artificial Neural Network

Loss Function: The difference hetween the predicted output and
the actual target value is calculated using al Ioss function. This
loss represents the error of the network.

1 WV 1 L "'75/,/ 4|

- —§ TECHOLUG géiif/‘




Artificial Neural Network

Backpropagation: The error is propagated hack through the
network, and the gradients of the loss with respect to each
weight are calculated. These gradients indicate the direction and
magnitude of the weight adjustments needed to reduce the error.

gt




Artificial Neural Network

Weight Update: An optimization algorithm (like gradient
descent) uses the gradients to update the weights. The weights
are adjusted in the direction that mmlm!zes the loss.

IV I =
:tg TECHOLUG g;




Artificial Neural Network

What happens in each epoch: ,
1. Data Shuffle = huu‘ﬂduu..ﬂhlmﬂ 7
2. Batching (Optlona)a NI ==
3. lteration f‘ =
a. Forward Pass mimm
b. Loss Calculation
¢. Backpropagation
d. Weight Update
4. Epoch Completion

‘ul H
)

I‘

TECHOLUE
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Artificial Neural Network

What hannens in each epoch

1.
2.

3.

4,

Datz}LShllf’fle . ““““The training data is typically
Baiciiiig \Ullt"l“a') | é [\shuffled at the beginning of each
Iteration . "epoch. This helps prevent the

a. Forward Pass
b. Loss Calculation
¢. Backpropagation
d. Weight Update
Epoch Completion

T network from learning the order of
the data and encourages better
generalizatio



Artificial Neural Network
What happens in each epoch

1. Data Shuffle +““““The training data is often divided

2. Batching (ﬂllt"’“a” “.into smaller batches. This is

3. [teration ~— = "especially useful for large datasets
a. Forward Pass ' yyighat misht not fit into memory all
b. Loss Calculation at once.

¢. Backpropagation
d. Weight Update
4. Epoch Completion



Artificial Neural Network

What happens in each epoch:

1. Data Shuffle R
2. Batghing lﬂptlonal) For each batch (or the whole

“ It;;;ltllon = 'id.‘i‘!@?t if not usmg batches)

a. rorward Pass f?fa--r ‘,m‘-{f
b. Loss CGalculation

¢. Backpropagation

d. Weight Update

4. Epoch Completion



Artificial Neural Network
What happens in each epoch:

1. Data Shuffle A
2. Batching (ﬂptmnal) N IThe input data is fed through the
3. lteration o network, and the activations of the
1. Forward Pass 7 7y fneurons are calculated layer by
h. Loss Calsulation layer, producing an output
¢. Backpropagation prediction.

d. Weight Update
4. Epoch Completion



Artificial Neural Network
What happens in each epoch:

1. Data Shuffle A
2. Batching (ﬂptlonal) N Ihe difference between the
3. lteration ﬂ recqo predicted output and the actual
a. Forward Pass \’«T'target value is calculated using a
b. Loss Calculation loss function.

¢. Backpispagation
d. Weight Update
4. Epoch Completion



Gaussian Process Regression
What happens in each epoch:

1. Data Shuffle B

2. Batching (ﬂptlonal) N L =

3. [teration ﬂ rECHON = =
a. Forward Pass -y ,the BITO iS propagated back
b. Loss Caleulation < """ "through the network, and the™
¢. Backpropagation gradients of the loss with respect
d. Weigii Upiate to the weights are calculated

4. Epoch Completion



Artificial Neural Network
What happens in each epoch:

1. Data Shuffle L TR nurE

2. Batching (ﬂptlonal) NML ==

3. |tel‘atIOIl é TECHQ! 1= —
a. ForwardPass m ,An optlmlzatlon algorithm uses
b. Loss Calculation the gradients to update the ©
¢. Backnronagation weights of the network

d. Weight Update
4. Epoch Gainipiction



Artificial Neural Network
What happens in each epoch:

1. Data Shuffle B

2. Batching (ﬂptlonal) N L =

3. lteration ﬂ e
2. Forward Pass = = .,Repeat steps are repeated for all
b. Loss Caleulation  _ batches (or the whole dataset)
¢. Backpropagation until all the training data has been
d. Weight Update processed.

4. Epoch Completion



Artificial Neural Network
What happens in each epoch:

1. Data Shuffle Ll LR mlrE 7

2. Batching (Optlonal)% NML o

3. |tel‘atIOIl ;tg TECHQL! 1=
a. Forward Pass H ,Once aIIthe trammg data has
b. Loss Calculation _been processed, one epoch i is"
c. Backpropagation complete.

d. weight Upuate
4. Epoch Completion
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Artificial Neural Network

Tensorflow was previously the most widely used Deep Learning library,
however, it was tricky to figure with for newbies. A simple one-layer
_network involves a substantial amount of code. With Keras, however, the
entire process of creating a Neural Network’s structure, as well as training
and tracking it, becomes exceedingly straightforward. -

Keras is a high-level API built on top of TensorFlow (and other
backends like Theano and CNTK, though TensorFlow is the most
common and officially supported one now)




Artificial Neural Network

df = .read csv('data/surface.csv')
df = df.drop('dE', axis=1)
v = df['v\T']
T = df.columns[1:]
= ()" for t in T
W= (v) for v in v]
X, Yy = .meshgrid(T, v)
Z = ~array(dfileec|: 11
fig = .figure()

fig.set size inches(12, 12)
ax = fig.add subplot(11ll, projection='3d")
ax.scatter(x, y, z, color='b"')
ax.set xlabel('T (K)")
ax.set ylabel('v (quantum number)')
ax.set zlabel('k (cm™3/s)")
.show()




x.reshape(-1)
y.reshape(-1)
np.column_stack((t, v))
z.reshape(-1)

YL = np.loglO(Y)
X train, X test, Y train, Y test = train test split(\
X, YL, test size=0.1, random state=42)




model = Sequential()
model.add(InputLayer(input shape=(2,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1l, activation='linear'))
model.compile(loss='mean squared error', \

hist

optimizer=adam.Adam(learning rate=0.001), \
metrics=['mse'])

ory = model.fit(X train, Y train, epochs=20, \

.~ batch_size=64, verbose=1, validation split=0.1)

model.save( 'model.h5")




Artificial Neural Network This is the algorithm that

actually updates the weights and
biases based on the gradients.
While the backpropagation is the
) algorithm that calculates the
) gradients. indicating the
direction and magnitude of
change needed for the weights

model = Sequential()
model.add(InputLayer(input shape=(2,))
model.add(Dense(32, activation='relu')
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1l, activation='linear'))
model—compile(loss="'mean squared error',/\
optimizer=adam.Adam(learning rate=0.001),, \
metrics=['mse'])
history = model.fit(X train, Y train, epochs=20, \
batch size=64, verbose=1, validation split=0.1)
model.save( 'model.h5")



model = Sequential()

model.add(InputLayer(input shape=(2,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(64, activation='relu'))

model.add(Dense(32, activation='relu'))
model.add(Dense(1l, activation='linear'))
model.compile(loss='mean squared error', \
optimizer=adam.Adam(learning rate=0.001), \
metrics=['mse'])

ory =-model.fit(X train, Y_train, epochs=20, \
~ batch_size=64, verbose=1, validation split=0.1

model.save( 'model.h5™)

hist




from : : import plot model
plot model(model, to file='model plot.png',\

Artificial Neural Network ey o
) input: | [(None, 2)]

None 2
one, 52
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Epoch

36/36 1s 5ms/step - loss: 42596.5156 - mse: 425
Epoch

36/36 0s 1lms/step - loss: 743.3082 - mse: 743.3
Epoch

36/36 0s 1ms/step - loss: 54.6704 - mse: 54.67C
Epoch

36/36 0s 1lms/step - loss: 38.0262 - mse:

Epoch

36/36 0s 2ms/step - loss: 37.2296 - mse:

Epoch

36/36 0s 3ms/step - loss: 36.8328 - mse:

Epoch

36/36 - 0s 2ms/step - loss: 36.6504 - mse: 36.650

Cna~h

hie

| | | batch size=64, verbose=1, validation split=0.1)
model.save('model.h5")




print("min- loss: ", min(history.history['loss']))
print("min-val loss: ", min(history.history['val loss']))
plt.plot(history.history['loss'])

plt.plot(history.history['val loss'])
plt.title('model loss')

plt.ylabel('loss"')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')
plt.show()

0.2s




Artificial

print(“min
print("min

0.2s

t.plot(h
t.plot(h
L title(
Lt.ylabel
C.xlabel
. Legend
Lt.show()

min loss: 30.04009246826172

min val loss:

- {rain
validation

26.83810043334961

model loss



from sklearn.metrics import mean—sgdared—error

Y pred = model.predict(X test)

rmse = np.sqrt(mean——sguared—error(Y test, Y pred))
print('rmse: ', rmse)

plt.scatter(Y test, Y pred)

plt.xlabel('True Values')
plt.ylabel('Predictions')

plt.show()




Artificial rmse: 5.150392745149612
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Artificial Neural Network

It's highly recommended and often crucial to normalize data when
using neural networks, although not always strictly mandatory

- — —
= - scalerx= M: xScaler ()
segalerx.fit(X)
Xs = scalerx.transform(X)
to be more :s:a:eryliogw(‘: ) -
correct It Wm_lld scaleme fit(YL.reshape(-1+%))
be better to fit YLs = scalery.transftform(YL.reshape(-1,1))
the scaler only
ontheljahﬂng X train, X test, Y train, Y test = train test split(\

set Xs, YLs, test size=0.1, random state=42)



model = Sequential()
model.add(InputLayer(input shape=(2,)))
model.add(Dense(32, activation='relu'))
model.add(Dense (64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1l, activation='linear'))
model.compile(loss='mean squared error', \

hist

optimizer=adam.Adam(learning rate=0.001), \
metrics=['mse'])

ory = model.fit(X train, Y train, epochs=20, \

I batch size=64, verbose=1, validation split=0.1)

model.save('model.h5")




4ms/step

Ims/step

Ims/step

2ms/step

2ms/step

bgtch_size;64, verbose=1, validation split=0.1)
save('model.h5")




print("min loss: ", min(history.history['loss']))
print("min val loss: ", min(history.history['val loss']))
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')
plt.show()




Artifici:

print ("
print ("
.plo
t.plo
bk
t.yla
t.xla
. leg
t.sho

min loss: 5.30519027961418e-05

min val loss:

w——Taln
validation

5.0720085710054263e-05

model loss



Y pred = model.predict(X test)
Y pred = scalery.inverse transform(Y pred)
Y test = scalery.inverse transform(Y test)

rmse = np.sqrt(mean—sguared—error(Y test, Y pred))

print('rmse: ', rmse)
plt.scatter(Y test, Y pred)
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.show()




Artifici rmse: 0.047275215445131295

Y pred
Y pred
Y test
rmse =
print (

t.scCq

toxl

o 'ylc -14 -13 -12
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Image Recognition

e Recognition of people,
animals, objects, places etc....
from digital images

e Trained using thousands of
pre-labelled images ¢

e Uses the pixels in each image
as descriptors

e [rained to recognise if the
image shows a certain class

. Hidden Layer . Output Layer




Convolutional Layers — extracting feature

WL - A nm
afs|s| o |v

Input Kernel

e Animage is a cuboid having .
its length, width (dimension of
» the image), and height (i.e the
channel 3 channels for RGB """ i
o Kernel slides across the height]]/" " g
and width of the image input”™  —
and dot product of the kernel 2] Jafsle]7]s]o]
and the image are computed




Convolutional Layers — extracting feature

Imagine this 3x3 Black an White i e image: and con3|der a 2x2 filter:

—— J
\¥E =7,/.

g S ML %
T

S
O = O
S



Convolutional Layers — extracting feature

Place the filter: We start by placmg the fllter in the top-left corner of the

image: o ;
s Wﬂ”ﬂli*&* o

1 0 1
1= 2 1 0
I |




Convolutional Layers — extracting feature

Element-wise multiplication: Multiply the correspondlng elements of the

filter and the image patch;s
- - 7= ML

o - TECHOLUG

i (=1 1) (1 % @)
(1 * @) (-1 *1)

=2 1 0
1= 0 1
1 0




Convolutional Layers — extracting feature

Summation: Add up the results of the multiplication:

e ———§ TECHOLUG % 4

=l Il@lﬂrl1+1\(l*@)

I | (=1) + (@) + (@) + (-1) = -2
I 1 1) 1 v = v (—1 2 l)



Convolutional Layers — extracting feature

Slide the filter: we move the filter and we apply the same operations so we got the
final result. After performing the convolution operation across the entire image,
Jyou'll get a smaller output matrix called a feature map In thls case, the feature map

" =g (IR VAN i 2

would be a 2x2 matrix:= = rtecrowue =

This particular filter is an example of an edge detection filter. It
highlights regions in the image where there's a change in intensity
-2 2 (from light to dark or dark to light). The negative values in the output
3 =D feature map correspond to edges where the intensity decreases from
left to right or top to bottom, while the positive values correspond to
edges where the intensity increases.




Convolutional Layers — extracting feature

Slide the filter: we move the filter and we apply the same operations so we got the
final result. After performlng the eenvelutlen eperatlon across the entire image,
you'll ge’ ; " feature map

would b
In a CNN, the activation function is applied to the stection filter It

output of each filter, to introduce non-linearity and ge in intensity

=7 shaping the feature representation. ues in the output
, y decreases from
VU 3 H 1§ £ -1 11] 1 R (1]

edges where the intensity i mereases



Convolutional Layers — extracting feature

During the training of a Convolutional Neural Network (CNN), the values within the
filters (also called kernels or weights) are what change and are learned. This is how
the network adapts and improves its ability to detect relevant features in the input
data. Similarly to the NN: 4 TECHOLUG E
- Initialization | m T MW‘, -
- Forward Pass
- Loss Calculation
Backpropagation
Weight Update.

Iteration:



Convolutional Layers — extracting feature

Convolutional layers often detect edges and
geometrles in the image (Colors: RGB three channels )

T LS L]

=

N
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Predicting Gene
Accessibility using CNNs

Kelley DR, Snoek J, Rinn JL.
Basset: learning the regulatory
code of the accessible genome
with deep convolutional neural
networks. Genome Research.
2016;26(7):990-999.
doi:10.1101/gr.200535.115.



(trainX, trainy), (testX, testy) = mnist.load=data()
print('Train: X=%s, y=%s' % (trainX.shape, trainy.shape))
print(' Test: X=%s, y=%s' % (testX.shape, testy.shape))

print('")

for i in range(9):

#plt.subplot(330 + 1 + 1)

print(trainX[i].shape)

print(trainy[i])

plt.imshow(trainX[i], cmap=plt.get cmap('gray'))
plt.show()




Train: X=(60000, 28, 28)

COI]\IO'U' Test: X=(10000, 28, 28)

(28, 28)
5
(trainX,

print('T
print("' |
print(""’
for i in
#plt.s
print (]
print (|
plt.imH (28, 28)
Dlt.Sh\O

N . ]

~- ~

(60000, )
(10000, )



(trainX, trainY), (testX, testY) = mnist.load data()
trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))

estX.reshape( (testX: el[0], 28, 28, 1))
trainY = to categorical(trainY)

estY = to categorical(testY)

if DEBUGVIS:
print(testY[1])
plt.subplot(330 + 1)
plt.imshow(testX[1], cmap=plt.get cmap('gray'))#
plt.show()




Convolutional Layers — extracting feature

(tralnx tralnY) (testx testY) = mnist.load data()
trai ' - ==—"1))
testf [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]

™ trail
test

if D
pr
pl
pLT. IMSNOW(TESTX[ L], CmMap=plC.geT cmap( gray J)
plt.show()




trainX = trainX.astype('float32')

testX = testX.astype('float32')
trainX = trainX / 255.0 = h
testX = testX / 255.0

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', \

|| | | kernel initializer='he uniform', \

| . input shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))

model.add(Flatten())

model.add(Dense (100, activation='relu', \

. . kernel initializer='he uniform'))
model.add(Dense (10, activation='softmax'))

opt = SGD(learning rate=0.01, momentum=0.9)
model.compile(optimizer=opt, loss='categorical crossentropy', \
| . metrics=['accuracy'])




trainX = trainX.astype('float32"')
testX = testX.astype('float32"')

trainX = trainX / 255.0
testX = testX / 255.0

model = ntial|()
el.add(Conv2D(32, (3, 3), activation='relu', \
kernel initializer='he uniform', \
| | ~input shape=(28, 28, 1)))
model.add ] {42 2)))
model.add(Flatten())
model.add(Dense (100, activation='relu', \
| kernel initializer='he uniform'))
model.add(Dense (10, activation='softmax'))
opt = SGD(learning rate=0.01, momentum=0.9)
model.compile(optimizer=opt, loss='categorical crossentropy', \
| | metrics=["'accuracy'])




trainX =
testX =
trainX =
testX =

mode'l
model.

model.

model.

model.

model.
opt =
model.

trainX.astype('float32") | Thisis a max pooling layer, which
testX.astype('float32") reduces the spatial dimensions of

trainX / 255.0 the feature maps generated by the
testX / 255.0 convolutional layer. (2, 2): Specifies the

S size of the pooling window (2x2 pixels).
= Sequential|()) | ~ This means the layer will take the
add(Conv2D(32, (3, 3), activalipayimum value in each 2x2 region of
kernel ink tlallzeﬁhefeaunelnap \

LHpUL bHdpc—‘LO, 20, T
add (MaxPooling2D((2, 2)))
add(Flatten())
add (Dense (100, activation='relu', \
kernel initializer='he uniform'))
add(Dense (10, activation='softmax'))
SGD(learning rate=0.01, momentum=0.9)
compile(optimizer=opt, loss='categorical crossentropy', \
metrics=['accuracy'])




trainX,‘validX, trainY, validY‘= train_test_split(trainx, trainY, \
L PP PPl | test_size=8.20, random g

history = model.fit(trainX, trainY, epochs=10, \
~ batch_size=32, validation_data=(validX, validY), verbose=1)

_, acc = model.evaluate(validX, validY, verbose=0)
print('Validation Set > %.3f' % (acc * 100.0))

_, acc = model.evaluate(trainX, trainY, verbose=0)
print('Training Set > %.3f' % (acc * 100.0))

plt.clf()

plt.title('Classification Accuracy')
plt.plot(history.history['accuracy'], color='blue', label='train')
plt.plot(history.history['val accuracy'], color='orange', label='test"')
plt.show()




trainX, validX, trainY, validY = train test split(trainX, trainY, \

| || || | | | ] | test size=0.20, random s

1500/1500 [ ===] - 21s 1l4ms/
Epoch 10/10
1500/1500 [ - 20s 13ms/
Validation Set > 98.825
Training Set > 99.979

-CLE()

.title('Classification Accuracy')

.plot(history.history['accuracy'], color='blue', label='train')

.plot(history.history['val accuracy'], color='orange',6 label='test")
.show()




Convolutional Layers — extracting feature

conv2d 1 input

input:

[(None, 28, 28, 1)]

InputLayer

output:

[(None, 28, 28, 1)]

conv2d 1

i t:
Conv2D it

(None, 28, 28, 1)

output:

(None, 26, 26, 32)

max_pooling2d_1

MaxPooling2D

input: | (None, 26, 26, 32)

output: | (None, 13, 13, 32)

flatten 1

Flatten

(None, 13, 13, 32)

(None, 5408)

(None, 5408)

(None, 100)

dense 3

(None, 100)

(None, 10)

Classification Accuracy

Test Set > 98.780
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ROG/AUC

ROC (Receiver Operating Characteristic) and AUC (Area Under the Curve) are
powerful tools for evaluating the performance of classification models.

e True Positive Rate (TPR) / Sensitivity / Recall: The proportion of actual
= positive cases that are correctly identified by { the model.

£ TECHOLUG =

— 7:?:- =

TPR = TP / (TP + FN)

e False Positive Rate (FPR) / 1 - Specificity: The proportion of actual
negative cases that are incorrectly classified as positive.

FPR = FP / (FP + TN)



ROC/AUC True Positive Rate (TPR) against
the False Positive Rate (FPR) at
different threshold settings.

0L Predictions: Obtain the predicted

probabilities from your classification
. fne ROC Curve OJmodeI for all instances in your
5 - T.dataset.l-e

' Thresholds: Select a range of ™

thresholds between 0 and 1.

Calculate TPR and FPR: For each

threshold:
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Some general strategies

1. Data Strategies LAl
a®More Data: The most effectlve solution! More data provides a more

b.

representative sample and reduces the chance of learning noise.

Data Augmentation: Artificially increase your dataset size by creating
variations of existing samples. For images, this could include rotations,
flips, crops, etc. For text, you might use synonyms or paraphrasing.
Feature Selection: Carefully choose relevant features. Remove
redundant or irrelevant ones that might contribute to overfitting.



Some general strategies

1. Architectural Changes == ..l »“* ML
a.aSimpler Model: Reduce the complexity of your network. Try fewer layers, fewer

b.

C.

neurons per layer, or a less complex architecture.

Dropout: Randomly drop neurons during training. This forces the network to
learn more robust features and prevents reliance on any single neuron.,
Regularization: Add penalty terms to your loss function that discourage
large weights. Common types include L1 and L2 regularization. L2
regularization: Adds a penalty proportional to the square of the weights.
These penalties encourage the network to keep the weights small, effectively
shrinking them towards zero. This leads to a simpler model that is less likely to
overfit.



Some general strategies

1. Training Progess -, -t MmN

2 “Early Stopping: Monltor your model's performance on a validation set
during training. Stop trammg when valldatlon performance starts to
degrade. = e

b. Reduce Learning Rate A smaller Iearnlng rate allows the model to

make finer adjustments to the weights and avoid "jumping around" in the loss
landscape.



ML Introduction
Unsupervised techniques
Reinforcement Learning

Supervised Techniques : =
& LRand PLSand RFand GPR/TL.

o Deep Learning ~ ° i TWW
= NN m} H L
m CNN

o Interpretable ML

Working Examples
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Interpretable ML

e The Rise of Black Box Models:
o Machine Iearnlng models are becomlng increasingly complex and

.. accurate. — NAI _;;f =
o However many models are "black boxes meanmg their internal
workings are difficult to understan\d -

e The Need for Interpretability: —
o Understanding how models make decisions is crucial for trust,
accountability, and fairness.
o Interpretability helps identify biases, debug models, and gain
insights into the data.



Interpretable ML

Some model are directly interepretable as Linear Regression,

other model are not: i h.‘.umngmﬂ‘munmz 7
. gl - VI
o Model Specific: Techmques designed for partlcular model
types (e.g., rule extraction from decision trees). .

e Model Agnostic: Methods that work with any model,
regardless of its internal structure.
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Permutation feature importance

Permutation feature importance is a model-agnostic technique

used to measure the importance of features

‘——E TECHOLUG -?;;'—’?

It works by randomly shuffling the values of single feature and
measuring how much the model's performance decreases. The
more the performance drops, the more important that feature is



Permutation feature importance

Permutation feature importance is a model-agnostic technique
used to measure the importance of features
Baseline performance.  -coooc ¢+
Feature shuffling gy
Performance with shuffled feature
Importance calculation

Repeat for all features

ST RN '



Permutation feature importance

Permutation feature importance is a model-agnostic technique

used to measure the importance of features
- = =

1. Baseline perfqrmancggg TEENONYS T Train your model on the original
Z. Feature shutfhing ' 7y ®®ridataset and evaluate its

3. Performance with shuffled featiire performance using a suitable
4. Importance calculation metric (e.g., accuracy, F1-score,
5. Repeat for all features R-squared). This establishes a

baseline performance.



Permutation feature importance

Permutation feature importance is a model-agnostic technique

used to measure the importance of features
- = =

1. Baseline perfqrmancgg reenotte - Choose a feature and randomly
2. Feature shuffling ™ shuffie its values within the

o. rerformance with shufiled icature dataset. This breaks the

4. Importance calculation relationship hetween that

5. Repeat for all features feature and the target variable.



Permutation feature importance

Permutation feature importance is a model-agnostic technique
used to measure the impgrtance of features

B cals i NML —

1. Baseline performance:  -coooc =

2. Feature shuffling * ~ sr®® @m0 Evaluate the model's
3. Performance with shuffled feature performance on the
4. Importance calculation dataset with the
5. Repeat for all features shuffled feature.



Permutation feature importance

Permutation feature importance is a model-agnostic technique
used to measure the |mpertanee of features

- - ML = Galculate the difference in
1. Baseline perfermanee reenoLis f, ‘performance hetween the
2. Feature shuffling e ¥ _ baseline (original data)

' : Ll " and the shuffled data. This
3. Performance with shuffled feature difference represents the
4. Importance calculation importance of the feature.
9—Rapoat-for all faatures A larger drop in

performance indicates a
more important feature.



Permutation feature importance

Permutation feature importance is a model-agnostic technique
used to measure the importance of featl!res

- ——¢F
= - =
— b =
— = = =
e
= =
= P
= = s -
= [ ——
= = = :

1. Baseline performance  r=cioooc ;

2. Feature shuffling @ ®yy | Repeat steps 2-4 for each
3. Performance with shuffled feature = feature in your dataset to
4. Imnortance ealeulation get an iImportance score
0.

Repeat for all features for each feature.



newdf = newdf.dropna(axis=1)

print(newdf.shape)

corr matrix = newdf.corr().abs()

upper = corr_matrix.where(np.triu(np.ones(corr matrix.shape), k=1).astype(
to drop = [column for column in upper.columns if any(upper[column] > 0.90)

newdf = newdf.drop(newdf[to drop], axis=1)
print(newdf.shape)

Y = newdf['logBB']

X = newdf.drop(['Objects', 'logBB', 'LgBB'], axis=1)




pls = PLSRegression(n_components=20)

pls.fit(X train, y train)

y pred test = pls.predict(X test)

msetest = mean squared error(y test, y pred test)
r2test = r2_score(y test, y pred test)

y pred train = pls.predict(X train)
msetrain = mean squared error(y train, y pred train)

r2train r2 score(y train, y pred train)
0.0s




Permutation feature importance
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R2 test:
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R2 train:

0.12616
0.75701
0.16289
0.66275



from sklearn.inspection import permutation importance

esult = permutation importance(pls, X train, y train, \
| n repeats=10, random state=0, \

| | n_jobs=2, scoring='r2")
= _result.importances mean.argsort()
sorted idx most = sorted 1dx[-10:]
#sorted idx most-=-sorted idx most[::-1]

plt.barh(X.columns[sorted idx most], \

- result.importances_mean[sorted idx most])
plt.xlabel('Permutation Importance')

plt.show()




from sklearn.inspection import permutation importance

from sklearn.inspection import permutation importance
result = permutation_importance(pls, X test, y test
n_repeats=10, random state=0, \

| | | | n _jobs=2, scoring='r2")
sorted idx = result. 1mportances mean.argsort()

plt.barh(X.columns[sorted idx most], \

- result.importances_mean[sorted idx_most])
plt.xlabel('Permutation Importance')

plt.show()




ermutation feature importance
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PLS coefficients and the Permutatlon feature importance

IS =



most importante features = []

result = permutation importance(pls, X, Y, n repeats=10, \
random state=42, n jobs=2,

scoring='r2")

pfi sorted idx = result.importances mean.argsort()

#compute absolute values of the PLS coefficients
coef = np.abs(pls.coef ).flatten()

#sort the coefficients

sorted idx = np.argsort(coef)




gl
.rcParams|['figure.figsize'] = [8, 8]
= [np.mean(result.importances[i].T) for i in pfi_sorted_idx]

= [coef[i] for i in sorted idx]
.plot(cfs, fis, '-o', color='black')
.xlabel("PLS coefficients")
.ylabel("Permutation importances")
.title("Most important features ")
.Show()




Permutation feature importance

pLL.
plt.
fis

cfs

pLE.
plt
plt.
plt.
pLE.

eliidd) i
rcParams |

= [np.mex: § &
= [coef]: gzo
plot(cfs, 515
xlabel ("} E
ylabel ("] [
title("M( .
show () 0.0

Most important features

04 06
PLS coefficients

fi sorted idx]



ML Introduction
Unsupervised techniques
Reinforcement Learning

Supervised Techniques : =
& LRand PLSand RFand GPR/TL.

o Deep Learning ~ ° i TWW
= NN m} H L
m CNN

o Interpretable ML

Working Examples
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N,-H, Inelastic Collisions mixed quantum-classical rate coefficients

‘log, (k) is the label
v, T are the two features

We want to test the performances of
ttwo models NN and GPR



N,-H, Inelastic Collisions mixed quantum-classical rate coefficients

e Rate coefficients for vibrational energy transfer are calculated for collisions
between molecular nitrogen and hydrogen in a wrde range of temperature

and of initial vibrational states ==
* o The calculations were performed by a mrxed quantum -classical
method ; jzg [ECHOEUE :_,;Ef

ML Goal Predict rate coefficients for vibrational energy transfer processes
involving specific initial vibrational states, which are computationally

expensive to calculate directly.

Qizhen Hong, Loriano Storchi, Massimiliano Bartolomei, Fernando Pirani, Quanhua Sun,

Cecilia Coletti, "Inelastic N2+H2 collisions and quantum-classical rate coefficients:

large datasets and machine learning predictions" The European Physical Journal D, DOI:
10.1140/epjd/s10053-023-00688-4 (2023



N,-H, Inelastic Collisions mixed quantum-classical rate coefficients

(None, 2]
(None, 2)

GPR using Matern Kernel

MINININE

- = v=5/2
- - L E&
HoLUG =
H H g:\;{ﬁ: \i\“\l
NN model unsinf Linear fﬂ]'ﬂmii: ML -
activation in input and | )
1 V2v V2v
Donso | outpur| (None, 126) ¥)

Mone, 120

Mone, 32

Mone, 32
output: | (None, 1)




N,-H, Inelastic Collisions mixed quantum-classical rate coefficients

Test set MSE values as a
function of temperature:
log,, (k) values
corresponding to a
specific temperature T
were
removed from the training
~ : - set and constitute the test

“ 1 H ] set. The three panels

1 é _ | correspond to processes

i k. | “f - (5) with Av="1,2.3
OI{’{W 'l';-'ﬁf%; xi"ﬁ‘; 0|{4‘7"1%"‘i A :-p;'.‘ A "‘:i & - *"" ; r"i;r‘cir Ay _ rESDECtiVBIV
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N,-H, Inelastic Collisions mixed quantum-classical rate coefficients

values as a
nitial

ere removed
ining set and
e test set.

[ _ nels

il ol | | | Ito processes

Test set MSE
Test set MSE
Test set MSE

{m ,,,,,,,,,,,,,, _} | b mm‘) | P — J respectively

10 20 30 40 0 10 20 40

0 10 20 30 40
v, quantum number

v, quantum number

v, quantum number



N,-H, Inelastic Collisions mixed quantum-classical rate coefficients

The test set MSE values for the two
models obtained by removing an
increasing number of systematically
——selected
—points, corresponding to specific v values,
—from the training set, i.e., Set1, removed v
- =[2:4;6; 8;10; 14; 18; 22; 26; 30;
1111:35], Set2, removed v=[1;3; 5; 7, 9; 12;
16; 20; 24; 28; 32; 40], Set3, removed v =
[2; 3; 5; 6; 8;9; 12; 14; 18; 20; 24; 26; 30;
32], Set4, removed v = [1; 2; 4; 5; 1; 8; 10;
12;16; 18; 22; 24; 28; 30; 35; 40]. The
three panels correspond to processes ()
with Av =1, 2, 3, respectively

Test Set MSE
Test Set MSE

w
w
=
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]
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N,-H, Inelastic Collisions mixed quantum-classical rate coefficients

.umu;.GPR AV — 1
e |

E=E

s .Blue [points are the predicted

~ones, while the green points
are the training set




N,-H, Inelastic Collisions mixed quantum-classical rate coefficients

RMSE and RMSE

0.100

0.075

0.050

0.025

0.000

1 vsplit

== NN Avg. RMSE == GPR Avg. RMSE

2 vsplit

3 vsplit

Dv

1 vset split

2 vset split

3 vset split

Preliminary new results
after a deeper grid
search of better
hyperparameters

NN [64; 64; 64] batch
10 epochs 100

GPT Mattern Kernel v =
2



. * GRID WIF and PLS
A



Machine Learning and the GRID Force-Fields

o GRID program: a computational procedure for determining energetically favourable binding sites on

molecules for functional groups of known structure through the use of PROBES.
o  The PROBE is moved through a grid of points superimposed on the target molecule (to each atoms of the target and

‘@mType is assigned) . Its interaction energy with the target molecule is computed by an empirical energy

B - D ‘Z_% I\/I I'E L sdJJ\ IE,.=hyd bond teract E
= Lennard-Jones potential E, .= hydrogen bonding interaction energy E =
EXYZ = E[ELJ] + E[EHB] + Z_[EQ] + [S]“Lelltlactrosta!_ﬁic function $= entropic term ‘

A




Machine Learning and the GRID Force-Fields

We build PLS models, each model is related to a specific AT, to improve the quality of the
Hydrogen-Bonding term E that is the product of three terms terms:

ko b b b ook e o o o !

mmw

o E based on the distance between the target and the probe given in keal/mel
° The other two, both ranging in the interval 0- 1 They are dimensionless funetlons ef the angles t and p made by the hydrogen bond
(HB) at the target and the probe atoms respeetwely TECHOLUG ‘—7, z

7\
\‘,

t

Jm

Er assumes relative values in case of interaction with a HB acceptor or donor

E HB = E,*Et*Ep. complementary probe and is parametrized by two values: Emin is the strongest

hydrogen-bond attraction energy at the optimum position (Emin), and half

Emi dEmi of the straight-line distance between donor and acceptor atom pairs which
min — demin corresponds to the strongest hydrogen-bond attraction energy (Rmin).

Sara Tortorella, Emanuele Carosati, Giovanni Bocci, Simon Cross, Gabriele Cruciani, Loriano
Storchi, "Combining Machine Learning and Quantum Mechanics Yields More Chemically-Aware
Molecular Descriptors for Medicinal Chemistry Applications", Journal of Computational
Chemistry, DOI: 10.1002/jcc.26737 (2021)



Machine Learning and the GRID Force-Fields

The dataset is made of 66463 drug-like molecules

We used GAMESS-US B3LYP/SVP (necessylty of havmg a versatile basis set and method) to
compute the Electrostatic Potentlal (EP) for each atomb =

-----

EP is converted to the so called dEmln value using Imear equatlon derived so that for each AT

all the resulting dEmin values always fall W|th|n an acceptable range
wp'» "“"wrlu T

H — *
dEmingy = mpy™EP +qpy;. [ e

each AtomType

The dEmin is our label

dEminAH = —mAH*EP —qAH-



Machine Learning and the GRID Force-Fields

N:= sp2 N with lone pair (HB acceptor) N1 Neutral flat NH eg amide (HB donor)

- -~
o ©°
E E
= =
0 8
= =3
< < -
£ £
= w
© °

EP (A.U.)

The red lines represent values of the traditional, static Emin of the GRID force field, namely -5.5 for N:= and -4.0 for N1 atom
types. dEmin, dynamic Emin



Machine Learning and the GRID Force-Fields

Does chemically sound to use the dEmin in the the EHBterm ?

_ NI

+We decided to test the correlation of
the proposed dEmin to thoserec
experimental hydrogen-bonding (/HB)""T'T‘\
properties. 2l -

dEmin versus H-bond basicity scale
for the Kenny dataset (279 atoms, R
— Pearson = 0.85).

4

dEmin (kcal/mol)



Machine Learning and the GRID Force-Fields

We have a good label, now we need to select the feature (descriptor) to use in the model

The molecular environment is descrlbed by a tree- structured molecular fingerprint with a
length of 10 bond distances E

LT
1]
‘ [

,, > 8 TECHOLUG =
© 1 8 N 3H 122 e N
1 2 9C.3326 11 C.3 326 IS
2 2 12 C.3 629 160 C.3 629 2]
3 1 7 N.3 ar 1016
4 1 5 C.ar+ 1250
5 2 4 NPYM 1706 6 NPYM 1706
6 2 3 C.ar+ 1856 1 C.ar+ 1856




Machine Learning and the GRID Force-Fields

We build PLS models, each model is related to a specific AT, to improve the quality of the
Hydrogen-Bonding term E | UL

Emin dEmin



Machine Learning and the GRID Force-Fields

Using this approach, 22 PLS models were built relating atomic environment to dEmin for
the HB GRID atom types (some of the models results are reported validated using
leave-one-out crossvalldatlon)

ool sl ol ol ol b ol bl e oo sk ool ok s ¢

1"““ l

Il

I
i

SDEP
(kcal/Mol)

041
0.49
0.53
0.38
041
0.38
047
0.12
0.32

Description
sp3 (tertiary) nitrogen, accepting one H-bond

sp3 (secondary) nitrogen, donating one hydrogen and
accepting one H-bond

sp3 (primary)nitrogen, donating up to two hydrogen and
accepting one H-bond

oxygen of nitro or nitroso group, accepting up to two H-bond

sp2 (aromatic) nitrogen, accepting one H-bond

sp2 nitrogen with two lone pairs and one double bond

>>>>o>o>>§':
g
3
(=%

sp nitrogen
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Loriano Storchi, Gabriele Cruciani,
Simon Cross, "DeepGRID: Deep
Learning using GRID descriptors for
BBB prediction", Journal of

DOI: 10.1021/acs.jcim.3c00768
(2023)
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Test Case: Blood Brain Barrier Permeation

e A model exists within VoISurf (’LS’ — we have a baseline

SRS

=

0 We can investigate a1 number of modelllng approaches

e N

DeepGRID, Random Forest & PLS (using VS descrlptors) 4
/ dJH mmm '[|R ||\ y : l.__f"

e There are some larger publlcly avallable datasets
eg. LightBBB (7000 cpds)

. \VolSur



Dataset Preparation

e VS-lgBB-332 dataset In-house dataset used to build the original VolSurf model
e Light-lgBB-416 dataset A subset of the 2105 dataset which had experimental logBB
valuesp

e Light-BBclass-2105 dataéet Cler_srsmcatlon Generated from the Shaker/Parakkal
LightBBB dataset of 7000+ struetures,:1 ::Jb " =
o After filtering by InChl to remove dupllcates 4285 cempounds remained (-40%!)
o (Given that such a large proportion of the dataset contained duplicates we filtered
also by Druglikeness to give 3464 compounds

o 10% of the dataset removed due to duplicate InChl strings or diastereoisomerism

Tum

mu



Dataset Splitting

e [or each dataset, subsets of compounds were randomly selected:
0 Trammg Set: 60% - used to train the ‘models

> & Validation Set: 20% - used to select the best hyperparameters or
to train the CNN:* TecHolus =

; g
aaa

o Test Set: 20% - used as a final performance check e
o The same sets were used for each model
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DeepGRID Approach
GRAID descriptors calculated (normalised GRID MIFs, 8 channels)

ST el TS e

Descrlpys fed into a Deep Lea'rnlng CNN mogel L

Sl /Y

Nk é‘ LY

Note: in this case the training and validation sets were mixed so that different viewpoints of the
same molecule were in training/validation, to allow the model to learn from the viewpoints



DeepGRID is alignment independent

Each molecule conformation centred W|th|n a grid cage 0,0,0 to 30,30,30
21 Viewpoints’ generated by retatlng the molecule areund each axis







DeepGRID Model

e J convolutional layers, drop out and max pooling
o extracting features and reducing the dimensionality

o Flattening layer
~e 3 dense layers and drop out before the final de n= Iayer :

— TECHOLUG e

-
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DeepGRID Hyperparameters optimization
Volsurf Descriptors

Descripeion
DRY

Molecular volume
Molecular surface
Palanzabiity
Molar mass
Hydrogen bonding

Amphiphulic moment
Best volumes
W1-W3 Hydrophilic regions
ID1-108 X Hydrophoboc integy mament
C . Capacity factor
Hydrophobee regions
Critical padcing
nEanthm of partition coefhicen
Duffusiviey

* Rlanrk, ather ways of calazdation, For deatails, see reference Cruciant ¢ al (20000




DeepGRID vs RF and PLS models D&M &G

Volsurf3 Descriptors m“r , R

\(_Q s b oo bk o b e

e Extracted features used by
~ Quite some time was the dense layers
4 needed to develop the
VS descriptors
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VS-1gBB-332 Dataset

VS3 IgBB VS3 IgBB

' % <2.0
I I I E I I I -
- VeepGRID

Lower is better Higher is better



Light-lgBB-416 dataset is more diverse

More diverse — more difficult— all approaches give less accurate
mOdE|S ' -l um;‘m.ﬂlmm;

VS3 IgBB ' DeepGRID PLS VS3IgBB

Lower is better Higher is better



DeepGRID gives a robust model

e Y-Scrambling the data
affects the model, ie. It i IS i
not overfitting =

e At 5% scrambling the Test
MSE is only 17% worse, * ...
hence the approachis
relatively robust to . i
erroneous data

8 TrainMSE
@ ValidMSE
TestMSE

L
(2]
=
[4}]
0
©
D
S
%]
=
S

2090 Y-Scragpling 40, 80%




Regression — Classification

e The regression models for described can also be used for classification

(BBB +/-) (ol R =
o Compounds with experimental IgBB close to 0.0 may be ambiguous and
©  misclassified . | IMIL- T

= INECH@EG ==

e In this case we measured the ROC AUC at varylng thresholds on the Test

UL TIPS G

3 .
MSE: 0.13 . MSE: 0.13




Classification: VS-IgBB-332 model

e At a minimal threshold of 0.1, all models predict with >90% accuracy
e The RF model is sllghtly betterddm.m Al

M DeepGRID

Threshold for Clas




Classification: Light-lgBB-416 model

e At minimal threshold of 0.1, all models predict with ~30% accuracy
e All models are fairly equal il LS i~

_ ¥
B DeepGRID
RF
: MPLS
HVS3IgBB

0.15

Threshold for Classification




Classification Models - Light-lgBB-2105 dataset

e New classification models were built using DeepGRID and Random
rorest (with hyperparameter optimization)

e |[nitial attempts with DeepGRID kept stalllng durlng learning

o Potentially due to data imbalance? -

e The BBB- cpds were artlﬁclally augmented to bring the balance to

0.5:1
- successful learnin




DeepGRID Classification Models - Light-lgBB-2105
dataset

AUC Full Set: 0.97 Test Set: 0.87----,

-

DeepGRID - DeepGRID Train+Validation DeepGRID Test

10 1

i //

v

l"
I"
0.8 T 08
f/
e
,

True Positive Rate
A True PositiveARate
True Positive Rate

— AUC =0.97 —— AUC = 0.99 —— AUC = 0.87
-~ Random ----—- Random - Random

False‘Positive‘Rate ‘ . Falsé'Positive'Rate ‘ .‘ Falsé Positive'Rate



RF Classification Models - Light-lgBB-2105 dataset
AUC Full Set: 0.95 Test Set: 0.84

T
ROC RF Train+Validation } ROC RF Test
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True Positive Rate

— AUC = 0.95 — AUC =0.97 —— AUC =0.84

| FaIséMPositive'Rate - - - Falsé Positive Rate - " False Positive Rate




DeepGRID model the best for classification
All models classification performance (ROC-AUC) on the 2105 dataset

100
0.95
0.90

0.85

0.80
0.75
0.70
0.65
0.60
0.55
0.50

VS-gBB-332 VS-IgBB-332 VS-IgBB-332  Original nght IgEB- nght IgBB L|ght IgBB ight-IgBB{  Light-IgBB-

DeepGRD-R RF-R PLS-R VS3IgBB-R Dee pGRD—R FF R




DeepGRID: mixing VS descriptors and MIF

Clearance mechanism classification fro drugs two classes :

]
Ak ko ok #,at))&&ﬁil&lx’

e Metabolic Clearance: This is the most complex mechanism,
involving the biotransformation of drugs into more hydrophilic
metabolites to facilitate excretion.(643 compounds)

e Renal Clearance: This mechanism involves the direct excretion of
drugs in the urine, typically for small, hydrophilic compounds. (329
compounds)

| am using augmentation techniques



DeepGRID: mixing VS descriptors and MIF

input: (None, 21,21, 21, 24)
Two model are cocananated :

<N°&e'21'22212'2262)24> |_ - §Model2lsa3|mple input layer

“thata is getting the VS

HHNITS “descriptors just before the
' flattening layer

dense: Dense (None, 222308)
| (None, 16)

input: | (None, 16
batch normalization 3: BatchNormalization




DeepGRID: mixing VS descriptors and MIF

Layer Arrangement in a CNN

VS descriptors are appended together with the output of
the Convolutional layers in the flatten layer



DeepGRID: mixing VS descriptors and MIF

AUC Test Set without VS: 0.83 With VS : 0.90

| H\.\ H




DeepGRID: try to understand how the CNN works

It is possible, although quite tricky, to dump the features as extracted
by the Convolutional Iayers ul b
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LR and features generatlon
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Linear Regression

Linear Regression models predict a
dependent variable (Y) based on
independent variables (X).

The relationship between the varlables-
is assumed to be linear.

‘Models are relatively simple and eas
to interpret.

Common applications include
predicting sales, energy
consumption, and other continuous
values.

A key assumption is that the errors are
normally distributed.

SO

Ko
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Random error £
Y
P
TREx

Y

Observed value

Predicied walue

Intercept 6 {




A Formula search

Methods, such as random forest (RF) or neural network (NN), are very efficient 36 but not always

transparent, partially blurring the comprehension of the role played by the input variables in the final
results i AU =
e Improvements toward the interpretability of such “black-box” ML models have been made
»  through additional methodologles such as model- agnostlc methods (i.e., permutation feature
importance) — TECHOLUG =
e A ML-based approach to build sets of features (or descrlptors) starting from a given set of basic

variables (e.g., atomic properties), subsequently used to construct LR models (or formulas)

Inspired by the original work of Ghiringhelli et al. prediction of the difference in energy between RS
[rocksalt\ and /B; (zinc blende) from that optimization, a classification of the most stable crystal
structure semiconductor AB binary compounds (full dataset is made of 82 compounds)

"i

Udaykumar Gajera, Loriano Storchi, Danila Amoroso, Francesco Delodovici, Silvia Picozzi "Towards machine
learning for microscopic mechanisms:a formula search for crystal structure stability based on atomic
properties" Journal of Applied Physics, DOI: 10.1063/5.0088177 (2022)
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A Formula search

7 Atomic Properties (APs)

IP lonization potential
EA Electron Affinity
HOMO Highest occupied level
LUMO Lowest unoccupied level
radii of s orbital
radii of p orbital
radii of d orbital

C

Binary system based on
Mulliken’s electronegativity(EN)

A,B where EN(A) < EN(B)

2 types of atoms

7 APs per atom

IP, EA, HOMO, LUMO, 75, 13, 74

5 prototype functions (f (X))

X, X2, X3,VX, eX

Material Feature Generator

EX-1: Gen;’F _ M
L7 F.(AP3) £ f1(APy)

For each possible model, calculate
average of RMSEs for random N test-
train splits using Linear Regression

— f1(APy) £ f,(AP,)
f3(AP3) + f,(AP,)

AE

Selection of the best 10 formulas
having the smallest RMSE for
formula optimization

ax fi(APy) £ b x f,(AP,)

ARSI Ftar) d> AT

Top formulas to predict AE and
further physical analysis

(a) Basic atomic
properties (APs) used
to construct the
material features. (b)
Crystal structures of
RS and ZB (plot made
using the VESTA tool).
62 Gray (yellow)
spheres represent A
(B) atoms. (c)
Workflow for formula
construction,
machine-learning
methodology,
validation, and MF
selection.



A Formula search

GEN1: combine two prototype functions in the *~  GEN2: combine two prototype functions with the
numerator, forcing them to belong to the same | | | same kind of APs at the numerator and a single
kind of APs, which is both “spatial’-like or both prototype function at the denominator with an
“energy”-like; one prototype function is at then argument of a different kind with respect o the
denominator with the only constraint to be’_*"numerator ones. For instance, if AP, in f, (AP, )
non-zero — - eand AP, in f, (AP, ) are “ energy terms (|e EA or
ZI H HOMO) then AP, must be a “spatial” term (i.e., r

)

\ ”m‘wm

o JUAPY £ fi(APy)

f3(AP;3)



A Formula search

GEN3: combine two prototype functions at both GEN4: combine two prototype functions with the
the numerator and denominator W|thout any ||ll1.11 same physical dimensions at both the numerator
constraints, and denomlnator,

-l NM L

- -
TECHOLUG

7T 7 il 1 Q'W‘ v T

fi(APy) X f,(AP;)
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v — SAPD t f(AP)) ME=

f3(AP;) % fi(APy)’

f:(AP;) + fi(APy)




A FO rm u Ia Sea rch GRID search, for each set of weight coefficients generated

during the grid search, we also run the linear regression.
Thus, we are performing a proper formula optimization, as at

a X f 1(APy) % b x fz(Apz) ~each step of the grid search, we are updating both the

9 | 1[]||/weight coefficients as well as the slope and intercept
¢ X f3(AP3) * d Xf‘l(P‘*) . “comigg from the LR

=mX

=
=
= -
= =
= - =
= 2

Formula Success rate (%) Generator type

0.800x EA(B)—1.000xIP(B) __ . 55
0.127 % TLlosn@A? 0.352 89 1D descriptor

_1.870 x 2V B 0806l @] geq : 91 GEN1

1.010xr,(A)

0.477 x 2576 V/|HOMOB)| +0.468x+/ILUMOB)| _ () 37 : GEN2
. )4

1.609 x 0.642%1,(B)+0.502x /| ra(A)| GEN3

1.207 x 878xr,(B)+0200x1,(4) 0.359

0.512xr,(B)’+0.610x1,(A)’
| S ——

1D formulas after the optimization step, aiung witii ieiated statistics. Nutativn as in Tanie I. KMSEs are in eV.



A Formula search

Generator Total Number of  Elapsed time (s) for 1D Elapsed time (s) for formula
generated formulas formula construction  optimization

GENI 106400 5117.32 180.84

~ GEN2 67840 3338.93 181.54
GEN3 1091200 51821.54 420.52
GEN4 278106 13237.39 418.62

Time needed to generate the best 1D formula and perform its optimization. All the calculations have
been performed in a PC equipped with an Intel Core i5-8500 processor and 16 GiB of RAM.



A Scoring Function

Predicting ligand-metalloenzyme binding affinity, focusing on human Carbonic Anhydrase ||
(hCA 1) inhibitors. It combines fragment molecular orbital (FMO) and GRID approaches,

e MO Calculations: FM02 calculatlons were performed on reduced ligand-receptor
complexes to assess blndmg energlgsranrql pair mteractlon energies.

e GRID Calculations: GRID was used to calculate hydrophoblc interaction fields and
quantify hydrophobic mteractlons W W _l' -

o Dataset: A set of benzenesulfonamide Ilgands of hCA [l was selected as a case study.

Roberto Paciotti, Nazzareno Re,Loriano Storchi, "Combining the Fragment Molecular Orbital and GRID
Approaches for the Prediction of Ligandd€“Metalloenzyme Binding Affinity: The Case Study of hCA II
Inhibitors", Molecules, DOI: 10.3390/molecules29153600 (2024)



A portion of the Ligand 2

- - structure connected to the
A Scormg Funf:tmn benzenesulfonamide is polar
compared to other ligands,
AG = —7.4{[0.7(logP)> — 0.5(e™EE)]/[0.5(F2LE)> — 0.4(HIE-E)’]} — 1 which determines, in
principle, a better
interaction with water
molecules. Thus, we
hypothesize that the its
binding pose in the
experimental conditions
assumed in thee®
measurement of the Ki
could be influenced by
surrounding water
molecules and be slightly
o different from that observed

predicted AG (kcal/mol) | in the crystal structure.
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A Scoring Function

AG = —7.4{[0.7(logP)> — 0.5(e™™®E)] /[0.5(F2LE)® — 0.4(HIE-E)°]} — 1

To improve the binding

affinity of the
benzenesulfonamide there
“should be a certain balance
between electrostatic and
hydrophobic interactions in
order to minimize the
denominator and maximize

predicted AG (kcal/mol) maximize the binding affinity
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,Interpretable ML
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Random Forrest and Permutation Feature Importance

Use the RF model not for prediction purpose but to detect how much a feature is important respect
to the others. Two ingredients: SISl E

e The permutation feature importance is defined to be the decrease in a model score when a
- smgle feature value is randomly shuffled. This procedure breaks the relationship between

| A " 4 O e

the feature and the target, thus t the drop in the model score |s mdreatrve of how much the
model depends on the feature ™

e Random forests or random decrsron forests is an ensemhle learning method for
classification, regression and other tasks that operates by constructing a multitude
of decision trees at training time

Leonardo Aragao, Elisabetta Ronchieri, Giuseppe Ambrosio5, Diego Ciangottini, Sara Cutini, Cristina
Duma, Pasquale Lubrano, Barbara Martelli, Davide Salomoni, Giusy Sergi, Daniele Spiga, Fabrizio Stracci,
Loriano Storchi "Air quality changes during the COVID-19 pandemic guided by robust virus-spreading data

in Italy",to Air Quality, Atmosphere & Health, DOI: 10.1007/s11869-023-01495-x (2024)




Com. Density
Depriv. Index
eatures e
Dld-Young Ratio
Avg.PMyg
Avg.SO;
Avg.NO | @

CORRELATION

Feature name Description

Latitude

Old-YoungF

Com. Dens

Population Density Population divided by province’s area.

Commuting Density | Percentage of commuters over population [8].
IR

e

“Pordenonce

Deprivation Index Represents the multidimensionality of the social and material depri- : ﬂgﬁﬁ"m ks Beoto e
vation concept [29] (calculated for the year 2012). (} wgnmgvm;u-%;;;gvf“"‘"i

o
3 o o
S Astie era;can;mgemm * & Rovigo

& ‘- Reggio Emilia® /o Ferrara
ChgEDe. Ciova, Bl Ravenna
\,Sl,werya pe olog \}ﬁ' "
- imini
7 Pesar
® Arezzo \:Ma(crata

Latitude North-south geographic coordinate regarding the province’s capital.

5 \
Rerbgia  Ascoliz \
vela =N

) Terni
: v

Old-Young Ratio Number of individuals aged 20 or less over the ones aged 65 and over. Y ey,
\U\? L'Aquila ‘Chve(\»\ =
ROV 2 ‘Frmxﬂo_ﬂC.Cam;obassg_
Lating <

Avg. PMigo Average concentration of PMjp during the whole study period. " 3 Stz

.
Sléio Potensa

Avg. NO Average concentration of NO during the whole study period.

rotone

X
vamvmm; Y fétwm

eggio-Calabria
i}

Avg. SOz Average concentration of SOz during the whole study period.




104 Italian provinces analysed applying
the Permutation Feature Importance ...
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The role of the pollutants seems not
the most important

Details
All features

Latitude Removed
Latitude and Comm. Density removed

|
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| |

Population
Density

Commuting

MEAN SQUARED ERROR REGRESSION LOSS

d

Density

Deprivation
Index

Latitude

Old-Young
Ratio

Average

PM;0

Average

SO,

Average
NO







