
Introduction to Machine and Deep Learning using python

Loriano Storchi

University of Chieti-Pescara
INFN (Istituto Nazionale Di Fisica Nucleare) sez. Perugia

CNR SCITEC (Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”) sez. Perugia

My activities
● Four Component Dirac-Kohn-Sham Theory (BERTHA code)

○ CNR and UNIPG
● Machine Learning and Chemoinformatics

○ UNIPG and MolDiscovery
● HEP (High Energy Physics) - ML techniques and FPGA

(Field-programmable gate array) and Cloud Computing
○ INFN and CERN

● Bio and Chemoinformatics
○ UNICH

LINK TO THE CODE:
https://github.com/lstorchi

ML_Teaching

loriano@storchi.org

https://github.com/lstorchi
mailto:loriano@storchi.org

● Scikit-learn (also known as sklearn) is a popular and powerful open-source
Python library for machine learning.It provides a wide range of tools.

● Pandas is a powerful and versatile open-source Python library for data
manipulation and analysis. It provides high-performance, easy-to-use data
structures and data analysis tools.

● TensorFlow An open-source library developed by Google for numerical
computation and large-scale machine learning.. msily for deep neural
networks

● Keras A high-level API for building and training neural networks
● Matplotlib is a comprehensive and widely-used plotting library in Python.
● NumPy: a fundamental library for scientific computing in Python. It provides:

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

Machine Learning
Machine learning techniques can be divided into two foremost types:

● Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets consisting of input data without labeled responses (i.e. clustering
algorithms)

● Reinforcement Learning: the algorithms learn to react to an environment on their own. An
agent is in a situation of trial and error, where the consequences of its actions have an impact on
the environment and also on the problem’s goal. The agent is punished or rewarded on the basis of
its behavior, with the idea that, in the future, it will prefer optimal actions (i.e. our intelligent
cache system)

● Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a
model to generate reasonable predictions

Machine Learning
A machine learning approach to
detecting odd and even numbers,
such as using a binary
classification model trained on a
dataset of numbers and their
parity, differs from the standard
approach, which involves dividing
the number by 2 and checking the
remainder.

Machine Learning - Features

Features, also known as descriptors, are the input
variables used to make predictions.
In cheminformatics, features often include
molecular weight, chemical structure, and physical
properties.
They can be calculated or experimentally
determined.
Careful selection of features is crucial for model
performance.
Feature engineering techniques can improve
model accuracy.

Machine Learning
Features could be:
the day of the year
and the today
temperature

Label: is the
temperature for the
regression and

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

Machine Learning
Machine learning techniques can be divided into two foremost types:

● Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets consisting of input data without labeled responses (i.e. clustering
algorithms)

● Reinforcement Learning: the algorithms learn to react to an environment on their own. An
agent is in a situation of trial and error, where the consequences of its actions have an impact on
the environment and also on the problem’s goal. The agent is punished or rewarded on the basis of
its behavior, with the idea that, in the future, it will prefer optimal actions (i.e. our intelligent
cache system)

● Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a
model to generate reasonable predictions

Unsupervised Machine Learning
● Clustering: Clustering algorithms group similar data points together based on their

inherent structure or features. Some popular clustering methods include:
○ K-Means Clustering: Partitions data into 'k' clusters, where each data point belongs

to the cluster with the nearest mean.
● Dimensionality Reduction: Techniques for reducing the number of features (dimensions)

in a dataset while retaining as much information as possible. This can help with
visualization, noise removal, and improving the performance of other ML algorithms.
Some widely used methods are:
○ Principal Component Analysis (PCA): Transforms data into a new set of uncorrelated

variables (principal components) that capture the maximum variance in the data.

K-Means

Clustering K-means
Two-dimensional data can be easily visualized
for intuitive understanding..

K-means aims to minimize within-cluster
distance and maximize between-cluster
distance when we are considering a
N-dimensional space.

Clustering K-means
In k-means clustering, the objects are divided into several
clusters mentioned by the number ‘K.’ So if we say K = 2, the
objects are divided into two clusters, c1 and c2

● The features or characteristics are compared, and all objects
having similar characteristics are clustered together.

● The algorithm works by first randomly picking some central points
(called centroids) and then assigning every data point to the
nearest centroid.

● Once that’s done, it recalculates the centroids based on the new
groupings and repeats the process until the clusters make sense

Clustering K-means
Grouping Similar Data Points
K-Means is designed to cluster data points that share common traits, allowing
patterns or trends to emerge.

Minimizing Within-Cluster Distance
Keep data points in each group as close to the cluster's centroid as possible

 Maximizing Between-Cluster Distance
K-Means also aims to maintain clear separation between different clusters.

Clustering K-means: Example and Code

Clustering K-means: Example and Code

The elbow method shows that 3 is
a good value for K, so we retrain
and visualize the result:

Clustering K-means: Example and Code
inertia is a key concept that measures the compactness
of your clusters. Think of it as a way to quantify how
tightly grouped the data points are within each cluster
Inertia is calculated by summing the squared distances
between each data point and its assigned cluster center
(centroid).
Find the Elbow: Look for the point on the curve where
the rate of decrease in inertia starts to slow down
significantly. This point resembles an elbow, hence the
name "elbow method.

Clustering K-means: Example and Code

Clustering K-means: Example and Code

Principal component analysis (PCA)

Dimensionality Reduction:: PCA
Principal component analysis, or PCA, is a statistical procedure that allows you to
summarize the information content in large data tables by means of a smaller set
of “summary indices”
● Principal components are new variables that are constructed as linear

combinations or mixtures of the initial variables.
● These combinations are done in such a way that the new variables

(i.e., principal components) are uncorrelated and most of the
information within the initial variables is squeezed or compressed
into the first components

● Practically it consists on a diagonalization of the covariance matrix

Dimensionality Reduction:: PCA
How can you
observe from the figure, the
first principal component (PC
1) is in the direction
of maximum variance and its
origin is located in the
average value of the variable.
The residual variance is
represented by the second
principal component
(PC 2), in the direction
perpendicular to the first
component.

Dimensionality Reduction:: PCA
UC Irvine Machine Learning Repository

Dimensionality Reduction:: PCA
UC Irvine Machine Learning Repository
The data set contains 3 classes of N instances each, where each class
refers to a type of iris plant

SCALE the Data

Dimensionality Reduction:: PCA
Scale the data so: mean = 0 and variance = 1

Dimensionality Reduction:: PCA
Scale the data so: mean = 0 and variance = 1

RUN the PCA

Dimensionality Reduction:: PCA
Run the PCA

Calculates the
principal
components
projects your
data onto the
principal
components

Dimensionality Reduction:: PCA
Run the PCA

Use the PCA to represent the data (clustering)

Dimensionality Reduction:: PCA

Dimensionality Reduction:: PCA

Dimensionality Reduction:: PCA

Importance of the features within each components

Dimensionality Reduction:: PCA
Component-specific importance: This method provides the importance
of each feature within a specific principal component. A feature might
be important in one PC but less important in another

Dimensionality Reduction:: PCA
Component-specific importance: This method provides the importance
of each feature within a specific principal component. A feature might
be important in one PC but less important in another

Dimensionality reduction when using a Supervised technique

Dimensionality Reduction:: PCA

Pseudo Random
numbers seed

Dimensionality Reduction:: PCA

Dimensionality Reduction:: PCA

Dimensionality Reduction:: PCA

Not the best option as we should scale,
train the PCA only on the training set .
See the afternoon exercise

Dimensionality Reduction:: PCA

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

Machine Learning
Machine learning techniques can be divided into two foremost types:

● Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets consisting of input data without labeled responses (i.e. clustering
algorithms)

● Reinforcement Learning: the algorithms learn to react to an environment on their own. An
agent is in a situation of trial and error, where the consequences of its actions have an impact on
the environment and also on the problem’s goal. The agent is punished or rewarded on the basis of
its behavior, with the idea that, in the future, it will prefer optimal actions (i.e. our intelligent
cache system)

● Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a
model to generate reasonable predictions

Tommaso Tedeschi, Marco Baioletti, Diego Ciangottini, Valentina Poggioni,
Daniele Spiga, Loriano Storchi, Mirco Tracolli, "Smart Caching in a Data Lake

for High Energy Physics Analysis", Journal of Grid Computing, DOI:
10.1007/s10723-023-09664-z (2023)

Reinforcement Learning: Q-Learning
Reinforcement Learning lies between the spectrum of Supervised Learning and
Unsupervised Learning,. How does Reinforcement Learning work in a broader
sense ?
● An "agent" is exposed to the environment
● The situations they encounter are states
● Our agents react by performing an action to transition from one "state" to

another "state,"
● After the transition, they may receive a reward or penalty in return
● The policy is the strategy of choosing an action given a state in expectation

of better outcomes.

Reinforcement Learning: Q-Learning

ACTION

Reinforcement Learning: Q-Learning

REWARD

STATE

Reinforcement Learning: Q-Learning
Several approaches
1. Value-Based Methods
2. Policy-Based Methods
3. Model-Based Methods

I will give you a quick overview about one of the Value-Based Methods that is
the:
Q-Learning: A model-free approach where an agent learns an action-value
function (Q-function) that estimates the expected reward for taking a given
action in a given state.

Reinforcement Learning: Q-Learning
Simple example (no code)

A robot has to cross a maze and
reach the end point. There are mines,
and the robot can only move one tile
at a time. If the robot steps onto a
mine, the robot is dead. The robot
has to reach the end point in the
shortest time possible.

Reinforcement Learning: Q-Learning
Simple example (no code) ● The robot loses 1 point at each

step. (force the robot to take the
shortest path).

● Mine, the point loss is 100 and the
game ends.

● If the robot gets power it gains 1
point.

● If the robot reaches the end goal,
the robot gets 100 points.

Reinforcement Learning: Q-Learning
The Q-Table, the columns are the
actions and the rows are the states.
● Actions Space: 4 possible actions

move up, down, left or right
● States space: 5 state start,

nothing (blank square), power,
mine, end

● Rewards: loss 1 for each step,
loss 100 for mine, gain 100 for
end , gain 1 for power

Procedure

Reinforcement Learning: Q-Learning

Initial Q-Table and how to choose an action

Reinforcement Learning: Q-Learning
● Initialize the Q values:, randomly, in

this example we will initialize all
values to zero

● Choose an action (a) in the state (s)
based on the Q-Table
○ One can use different strategies

to select the best action
○ in this case the action is chosen

randomly using epsilon greedy
strategy

Reinforcement Learning: Q-Learning
 if random() < ε
 random action
otherwise
 action = argmax(Q(state, a)) for all actions a

argmax(Q(state, a)) for all actions a: This part calculates the action with the
highest Q-value in the current state

Reinforcement Learning: Q-Learning
if ε = 0.1 (10% chance of exploration)., so
90% of times we select the best action
accordingly to argmax

if we are in state 0 = Start in this case
clearly the best action is Right

105 -2

How to update the Q-values

Reinforcement Learning: Q-Learning
Bellman equation

Q(s, a) = Q(s, a) + α [R(s, a) + γ * max(Q(s', a')) - Q(s, a)]
,

Q(s, a): The current
Q-value for taking
action a in state s.

α (alpha): The learning rate (a
value between 0 and 1). It
determines how much we update
the Q-value based on new
information. A higher learning rate
means bigger updates.

Reinforcement Learning: Q-Learning
Q(s, a) = Q(s, a) + α [R(s, a) + γ * max(Q(s', a')) - Q(s, a)]

R(s, a): The
immediate reward
received after
taking action a in
state s.

γ (gamma): The discount factor (a
value between 0 and 1). It determines
how much we value future rewards
compared to immediate rewards. A
higher discount factor means we care
more about future rewards.

Reinforcement Learning: Q-Learning
Q(s, a) = Q(s, a) + α [R(s, a) + γ * max(Q(s', a')) - Q(s, a)]

max(Q(s', a')): The maximum
Q-value for the next state (s')
after taking action a. This
represents the best possible
outcome we expect in the future.

s': The new state the agent transitions
to after taking action a in state s.

Reinforcement Learning: Q-Learning
Current state (s): 0
Action (a): Up
Reward (R(s, a)): 1 (let's say it gets a small
reward for moving up)
Next state (s'): 1
Learning rate (α): 0.1
Discount factor (γ): 0.9
Current Q-value (Q(s, a)): 10 (from the
Q-table)
max(Q(s', a')): 12 (the highest Q-value in
state 1 is for action "Right")

510 8-2

12-5 -17

63 015

-8-10 1-5

105 -210

State 1

State 2

State 3

State 4

State 0

Reinforcement Learning: Q-Learning
Q((0, 0), Up) = 10 + 0.1 [1 + 0.9 * 12 - 10]
 = 10 + 0.1 * 1.8
 = 10.18510.18 8-2

63 015

-8-10 1-5

105 -210

State 1

State 2

State 3

State 4

State 0

12-5 -17

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

Machine Learning
Machine learning techniques can be divided into two foremost types:

● Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets consisting of input data without labeled responses (i.e. clustering
algorithms)

● Reinforcement Learning: the algorithms learn to react to an environment on their own. An
agent is in a situation of trial and error, where the consequences of its actions have an impact on
the environment and also on the problem’s goal. The agent is punished or rewarded on the basis of
its behavior, with the idea that, in the future, it will prefer optimal actions (i.e. our intelligent
cache system)

● Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a
model to generate reasonable predictions

Supervised Machine Learning
Features could be:
the day of the year
and the today
temperature

Label: is the
temperature for the
regression and

Machine Learning
Supervised: used when you want to predict or explain the data you possess. A supervised algorithm takes a
known set of input data and known responses to the data (output) and trains a model to generate reasonable
predictions

Y = Fa,b,c (X)

Labels: dependent
variables (e.g. pKa

values , could be also a
class pass or not the

BBB)

Features (descriptors):
independent variables
(e.g. Molecular weight,

fingerprints)

Models: Linear Regression,
Random Forest, Artificial

Neural Network , Partial Leat
Square

Machine Learning / AI

INPUT ARE NUMBERS

lLinear regression
PLS
PCR

Decision Trees
Random Forrest

Neural Network

STRUCTURED DATA

CNN (2D and 3D images so arrays)

Recurrent NN (sequence has they have hidden
memory)

Graph NN (Graphs, e.g. molecules)

Transformers (sequence, but parallel, the
decoder is somehow “generating” the output

GAN Generative Advesal Network

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

LR

Linear Regression
Implementing linear regression of
some dependent variable 𝑦 on the
set of independent variables 𝐱 = (𝑥₁,
…, 𝑥ᵣ), where 𝑟 is the number of
predictors, you assume a linear
relationship between 𝑦 and 𝐱: 𝑦 = 𝛽₀
+ 𝛽₁𝑥₁ + ⋯ + 𝛽ᵣ𝑥ᵣ + 𝜀.

Linear Regression

Linear Regression

Linear Regression

Linear Regression

Linear Regression
R² measures how well the
regression line fits the data points.

RMSE stands for Root Mean Squared
Error. It's a common metric used to
evaluate the accuracy of a
regression model, or more generally,
to measure the difference between
predicted values and actual values.

Linear Regression

PLS

Partial Least Squares Approach
It is a linear relation but instead of the
pure X variables we are using LV (Latent
Variables) similar to PCR (Principal
Components Regression) but LV are build
to “better correlate” also to Y variable
respect to PC (Principal Components).

Partial Least Squares Approach
● Each molecule conformation was used to

calculate the VolSurf descriptors
● The VS model descriptors were removed (eg.

LgBB and Caco2)
● A PLS model was generated and the number

of components has been obtained looking for
the best RMSE in the validation set while
increasing the number of LV (Latente
Variables)

It is a linear relation but instead of
the pure X variables we are using LV
(Latent Variables) similar to PCR
(Principal Components Regression)
but LV are build to “better correlate”
also Y variable respect to PC
(Principal Components).

The hyperparameter here is represented by the
number of latente variables used

Partial Least Squares Approach
● Both PLS and PCR perform multiple linear regression, that is they build

a linear model, Y=XB+EY=XB+E
● n PCR (Principal Component Regression)) the set of measurements XX

is transformed into an equivalent set X’=XWX’=XW by a linear
transformation WW, such that all the new ‘features (which are the
principal components) are linearly independent.

● PLS is based on finding a similar linear transformation, but
accomplishes the same task by maximising the covariance between YY
and X’X’

Partial Least Squares Approach

Fingweorints
The molecular environment is described by a tree-structured molecular fingerprint with a
length of 10 bond distances

Fingweorints
The molecular environment is described by a tree-structured molecular fingerprint with a
length of 10 bond distances

If we consider 10 atom types and a fingerprint with a depth of 7

1 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 00 0 0 2 0 0 0 0

Partial Least Squares Approach
Cross validation K-folds:
● Data Splitting:

○ the dataset is randomly divided into K equal-sized parts (folds).
● Training and Testing:

○ The model is trained K separate times.
○ In each iteration, K-1 folds are used for training the model, and the

remaining 1 fold is used for testing.
This way, each fold gets a chance to be the test set while the rest
are used for training.

Partial Least Squares Approach
Performance Evaluation:

● For each iteration, a performance metric (e.g., accuracy, precision,
recal, RMSE) is calculated on the held-out test fold.

● This results in K performance scores.
● The final performance score is generally calculated by averaging the K

individual scores. This provides a more robust estimate of the model's
generalization performance compared to a single train-test split.

Partial Least Squares Approach
We should use only the
training set

Any models with the
correct API can be used

Partial Least Squares Approach

Partial Least Squares Approach We should use only the training (or a
the validation) set to perform the
hyperparameters search

Partial Least Squares Approach

Outlier

Maybe decrease the
number of components, use
a validation set to compare
R2 and MSE the results etc
etc

RF and classification

Decision Tree
Imagine you're trying to decide whether to
go to a party. You might consider factors
like:

1. Weather: Is it raining or sunny?
2. Friends: Are your friends going?
3. Time: Is it a weeknight or weekend?

You could use a decision tree to map out
your decision-making process

Decision Tree
Decision tree training: Individual decision trees within an RF are built using
algorithms that recursively partition the data based on features to generally
minimize an impurity measurement as the Gini impurity.

where pk is the proportion of samples in the node that belong to class k, and K is
the total number of classes

Random Forest Approach
● Imagine you have a complex problem to solve, and you gather a group of

experts from different fields to provide their input. Each expert provides their
opinion based on their expertise and experience. Then, the experts would vote
to arrive at a final decision.

● In a random forest classification, multiple decision trees are created using
different random subsets of the data and features. Each decision tree is like
an expert, providing its opinion on how to classify the data.

● Predictions are made by calculating the prediction for each decision tree and
then taking the most popular result. (For regression, predictions use an
averaging technique instead.)

Random Forest Approach
Bootstrapping:

Sampling with Replacement: Bootstrapping involves creating random samples
from the original dataset with replacement. This means that some data points may
appear multiple times in a single bootstrap sample, while others might be left out.
Multiple Samples: For each tree in the random forest, a new bootstrap sample is
created. So, each tree sees a slightly different version of the training data

Random forests use different sets of features for each tree

Random Forest Approach
Ensemble
aggregation: The final
prediction of an RF is
often an average (for
regression) or a
majority vote (for
classification) of the
predictions from
individual trees.

Matrics to be used in case of classification

Random Forest Approach
Here we will build a classification model so let’s define some metrics:
True Positive (TP): The model correctly predicted spam, and it was
actually spam.
True Negative (TN): The model correctly predicted not spam, and it
was actually not spam.
False Positive (FP) (Type I Error): The model predicted spam, but it
was actually not spam (a false alarm).
False Negative (FN) (Type II Error): The model predicted not spam,
but it was actually spam (a missed detection).

Random Forest Approach
Confusion Matrix

Random Forest Approach
Recall = TP / (TP + FN) essentially measures the ability of a
classifier to find all the positive instances in your datase
Accuracy = (TP + TN) / (TP + TN + FP + FN) is a common

metric that measures the overall correctness of a model's
predictions

Precision = TP / (TP + FP)evaluating the performance of a
classifier, particularly when you want to minimize false

positives

Random Forest Approach

Random Forest Approach

GRID Force-Fields
● GRID program: a computational procedure for determining energetically favourable binding sites on

molecules for functional groups of known structure through the use of PROBES.
○ The PROBE is moved through a grid of points superimposed on the target molecule (to each atoms of the target and

AtomType is assigned) . Its interaction energy with the target molecule is computed by an empirical energy
function

EXYZ = Σ[ELJ] + Σ[EHB] + Σ[EQ] + [S]
ELJ= Lennard-Jones potential EHB= hydrogen bonding interaction energy EQ=
electrostatic function S= entropic term

Volsurf Descriptors

Random Forest Approach

Maybe use only the
training set

Random Forest Approach

Maybe you want to use a validation set to find
the best hyperparameters

Important to compare
results

Random Forest Approach

Random Forest Approach

Random Forest Approach

Random Forest Approach Tree growth: Each tree in
the forest will be allowed
to grow until all leaves
are pure (all data points
in a leaf belong to the
same class) possible
overfitting

not a balanced set

Random Forest Approach

Random Forest Approach

Random Forest Approach

Random Forest Approach

Random Forest Approach

Random Forest Approach

Random Forest Approach

GPR

Gaussian Process Regression
Gaussian Process Regression (GPR), predictions are based on the
similarity between points.

Kernel Function: The core of GPR is the kernel function, which
defines the similarity or covariance between data points. This
function determines how much information is shared between
points – points that are more similar according to the kernel will
have more influence on each other's predictions.

Gaussian Process Regression
Prediction Process: When making a prediction for a new point, GPR
considers the similarity between that new point and all the points in the
training data. Points that are more similar to the new point (according to
the kernel) will have a greater weight in determining the prediction.

Imagine you're trying to predict the temperature at a new location. You
have temperature readings from several nearby weather stations. In
GPR, the kernel function would be like a measure of how close the new
location is to each weather stations

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

Deep Learning
Deep learning techniques involve training artificial neural
networks with multiple layers (hence "deep") to learn complex
patterns and representations from data

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

Artificial Neural Network
There are three layers in
the network architecture:
the input layer, the hidden
layer (more than one), and
the output layer. A typical
feedforward network
processes information in
one direction, from input
to output.

Artificial Neural Network
Weighted Sum: The neuron receives input signals from other
neurons or from the input layer. Each input signal is
multiplied by a weight, and these weighted inputs are
summed together.

they are
updated
during the
training

Artificial Neural Network
Bias: A bias term is added to the weighted sum. This bias
allows the neuron to shift the activation function and
learn more complex patterns.

they are
updated
during the
training

Artificial Neural Network
Activation Function: The activation function is applied to the sum
of the weighted inputs and the bias. This function introduces
non-linearity into the network, enabling it to learn complex relationships
in the data.

Artificial Neural Network
The activation
function is important
for two reasons: first,
it allows you to turn
on your computer. It
contributes to the
conversion of the
input into a more
usable final output.

Artificial Neural Network
Output: The output of the activation function is the neuron's output,
which is then passed on to other neurons in the next layer.

Artificial Neural Network
How the weights change during training

Initialization: Initially, the weights are assigned random values.

Artificial Neural Network
Forward Pass: The input data is fed through the network, and the
activations of the neurons are calculated layer by layer. This
process produces an output prediction.

Artificial Neural Network
Loss Function: The difference between the predicted output and
the actual target value is calculated using a loss function. This
loss represents the error of the network.

Artificial Neural Network
Backpropagation: The error is propagated back through the
network, and the gradients of the loss with respect to each
weight are calculated. These gradients indicate the direction and
magnitude of the weight adjustments needed to reduce the error.

Artificial Neural Network
Weight Update: An optimization algorithm (like gradient
descent) uses the gradients to update the weights. The weights
are adjusted in the direction that minimizes the loss.

Artificial Neural Network
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

Artificial Neural Network
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

The training data is typically
shuffled at the beginning of each
epoch. This helps prevent the
network from learning the order of
the data and encourages better
generalizatio

Artificial Neural Network
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

The training data is often divided
into smaller batches. This is
especially useful for large datasets
that might not fit into memory all
at once.

Artificial Neural Network
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

For each batch (or the whole
dataset if not using batches)

Artificial Neural Network
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

The input data is fed through the
network, and the activations of the
neurons are calculated layer by
layer, producing an output
prediction.

Artificial Neural Network
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

he difference between the
predicted output and the actual
target value is calculated using a
loss function.

Gaussian Process Regression
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

the error is propagated back
through the network, and the
gradients of the loss with respect
to the weights are calculated

Artificial Neural Network
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

An optimization algorithm uses
the gradients to update the
weights of the network

Artificial Neural Network
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

Repeat, steps are repeated for all
batches (or the whole dataset)
until all the training data has been
processed.

Artificial Neural Network
What happens in each epoch:
1. Data Shuffle
2. Batching (Optional)
3. Iteration

a. Forward Pass
b. Loss Calculation
c. Backpropagation
d. Weight Update

4. Epoch Completion

Once all the training data has
been processed, one epoch is
complete.

TensorFlow / Keras

Artificial Neural Network
Tensorflow was previously the most widely used Deep Learning library,
however, it was tricky to figure with for newbies. A simple one-layer
network involves a substantial amount of code. With Keras, however, the
entire process of creating a Neural Network’s structure, as well as training
and tracking it, becomes exceedingly straightforward.

Keras is a high-level API built on top of TensorFlow (and other
backends like Theano and CNTK, though TensorFlow is the most
common and officially supported one now)

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network This is the algorithm that
actually updates the weights and
biases based on the gradients.
While the backpropagation is the
algorithm that calculates the
gradients. indicating the
direction and magnitude of
change needed for the weights

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network
It's highly recommended and often crucial to normalize data when
using neural networks, although not always strictly mandatory

to be more
correct it would
be better to fit
the scaler only
on the training
set

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

Image Recognition
● Recognition of people,

animals, objects, places etc
from digital images

● Trained using thousands of
pre-labelled images

● Uses the pixels in each image
as descriptors

● Trained to recognise if the
image shows a certain class

Convolutional Layers – extracting feature

● An image is a cuboid having
its length, width (dimension of
the image), and height (i.e the
channel 3 channels for RGB

● Kernel slides across the height
and width of the image input
and dot product of the kernel
and the image are computed

Convolutional Layers – extracting feature

Imagine this 3x3 Black an White image: and consider a 2x2 filter:

Convolutional Layers – extracting feature

Place the filter: We start by placing the filter in the top-left corner of the
image:

Convolutional Layers – extracting feature

Element-wise multiplication: Multiply the corresponding elements of the
filter and the image patch:

Convolutional Layers – extracting feature

Summation: Add up the results of the multiplication:

Convolutional Layers – extracting feature

Slide the filter: we move the filter and we apply the same operations so we got the
final result. After performing the convolution operation across the entire image,
you'll get a smaller output matrix called a feature map. In this case, the feature map
would be a 2x2 matrix:

This particular filter is an example of an edge detection filter. It
highlights regions in the image where there's a change in intensity
(from light to dark or dark to light). The negative values in the output
feature map correspond to edges where the intensity decreases from
left to right or top to bottom, while the positive values correspond to
edges where the intensity increases.

Convolutional Layers – extracting feature

Slide the filter: we move the filter and we apply the same operations so we got the
final result. After performing the convolution operation across the entire image,
you'll get a smaller output matrix called a feature map. In this case, the feature map
would be a 2x2 matrix:

This particular filter is an example of an edge detection filter. It
highlights regions in the image where there's a change in intensity
(from light to dark or dark to light). The negative values in the output
feature map correspond to edges where the intensity decreases from
left to right or top to bottom, while the positive values correspond to
edges where the intensity increases.

In a CNN, the activation function is applied to the
output of each filter, to introduce non-linearity and

shaping the feature representation.

Convolutional Layers – extracting feature

During the training of a Convolutional Neural Network (CNN), the values within the
filters (also called kernels or weights) are what change and are learned. This is how
the network adapts and improves its ability to detect relevant features in the input
data. Similarly to the NN:

- Initialization
- Forward Pass
- Loss Calculation
- Backpropagation
- Weight Update.

Iteration:

Convolutional Layers – extracting feature
Convolutional layers often detect edges and
geometries in the image (Colors: RGB three channels)

Predicting Gene
Accessibility using CNNs

Kelley DR, Snoek J, Rinn JL.
Basset: learning the regulatory
code of the accessible genome
with deep convolutional neural
networks. Genome Research.
2016;26(7):990-999.
doi:10.1101/gr.200535.115.

Convolutional Layers – extracting feature

Convolutional Layers – extracting feature

Convolutional Layers – extracting feature

Convolutional Layers – extracting feature

Convolutional Layers – extracting feature Data
normalization

Convolutional Layers – extracting feature
32 filters/kernels each one 3x3 the
input is a grayscale image, 1 channel
only the ReLU is applied to each
output

Convolutional Layers – extracting feature
This is a max pooling layer, which
reduces the spatial dimensions of
the feature maps generated by the
convolutional layer. (2, 2): Specifies the
size of the pooling window (2x2 pixels).
This means the layer will take the
maximum value in each 2x2 region of
the feature map.

Convolutional Layers – extracting feature

Convolutional Layers – extracting feature

Convolutional Layers – extracting feature

ROC/AUC

ROC/AUC
ROC (Receiver Operating Characteristic) and AUC (Area Under the Curve) are
powerful tools for evaluating the performance of classification models.
● True Positive Rate (TPR) / Sensitivity / Recall: The proportion of actual

positive cases that are correctly identified by the model.

● False Positive Rate (FPR) / 1 - Specificity: The proportion of actual
negative cases that are incorrectly classified as positive.

ROC/AUC True Positive Rate (TPR) against
the False Positive Rate (FPR) at
different threshold settings.
Predictions: Obtain the predicted
probabilities from your classification
model for all instances in your
dataset.
Thresholds: Select a range of
thresholds between 0 and 1.
Calculate TPR and FPR: For each
threshold:

DNN overfitting

Some general strategies

1. Data Strategies
a. More Data: The most effective solution! More data provides a more

representative sample and reduces the chance of learning noise.
b. Data Augmentation: Artificially increase your dataset size by creating

variations of existing samples. For images, this could include rotations,
flips, crops, etc. For text, you might use synonyms or paraphrasing.

c. Feature Selection: Carefully choose relevant features. Remove
redundant or irrelevant ones that might contribute to overfitting.

Some general strategies

1. Architectural Changes
a. Simpler Model: Reduce the complexity of your network. Try fewer layers, fewer

neurons per layer, or a less complex architecture.
b. Dropout: Randomly drop neurons during training. This forces the network to

learn more robust features and prevents reliance on any single neuron.
c. Regularization: Add penalty terms to your loss function that discourage

large weights. Common types include L1 and L2 regularization. L2
regularization: Adds a penalty proportional to the square of the weights.
These penalties encourage the network to keep the weights small, effectively
shrinking them towards zero. This leads to a simpler model that is less likely to
overfit.

Some general strategies

1. Training Process
a. Early Stopping: Monitor your model's performance on a validation set

during training. Stop training when validation performance starts to
degrade.

b. Reduce Learning Rate: A smaller learning rate allows the model to
make finer adjustments to the weights and avoid "jumping around" in the loss
landscape.

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

Interpretable ML
● The Rise of Black Box Models:

○ Machine learning models are becoming increasingly complex and
accurate.

○ However, many models are "black boxes," meaning their internal
workings are difficult to understand.

● The Need for Interpretability:
○ Understanding how models make decisions is crucial for trust,

accountability, and fairness.
○ Interpretability helps identify biases, debug models, and gain

insights into the data.

Interpretable ML
Some model are directly interepretable as Linear Regression,
other model are not:

● Model Specific: Techniques designed for particular model
types (e.g., rule extraction from decision trees).

● Model Agnostic: Methods that work with any model,
regardless of its internal structure.

PLS and Permutation feature importance

Permutation feature importance
Permutation feature importance is a model-agnostic technique
used to measure the importance of features

It works by randomly shuffling the values of a single feature and
measuring how much the model's performance decreases. The
more the performance drops, the more important that feature is

Permutation feature importance
Permutation feature importance is a model-agnostic technique
used to measure the importance of features

1. Baseline performance
2. Feature shuffling
3. Performance with shuffled feature
4. Importance calculation
5. Repeat for all features

Permutation feature importance
Permutation feature importance is a model-agnostic technique
used to measure the importance of features

1. Baseline performance
2. Feature shuffling
3. Performance with shuffled feature
4. Importance calculation
5. Repeat for all features

Train your model on the original
dataset and evaluate its
performance using a suitable
metric (e.g., accuracy, F1-score,
R-squared). This establishes a
baseline performance.

Permutation feature importance
Permutation feature importance is a model-agnostic technique
used to measure the importance of features

1. Baseline performance
2. Feature shuffling
3. Performance with shuffled feature
4. Importance calculation
5. Repeat for all features

Choose a feature and randomly
shuffle its values within the
dataset. This breaks the
relationship between that
feature and the target variable.

Permutation feature importance
Permutation feature importance is a model-agnostic technique
used to measure the importance of features

1. Baseline performance
2. Feature shuffling
3. Performance with shuffled feature
4. Importance calculation
5. Repeat for all features

Evaluate the model's
performance on the
dataset with the
shuffled feature.

Permutation feature importance
Permutation feature importance is a model-agnostic technique
used to measure the importance of features

1. Baseline performance
2. Feature shuffling
3. Performance with shuffled feature
4. Importance calculation
5. Repeat for all features

Calculate the difference in
performance between the
baseline (original data)
and the shuffled data. This
difference represents the
importance of the feature.
A larger drop in
performance indicates a
more important feature.

Permutation feature importance
Permutation feature importance is a model-agnostic technique
used to measure the importance of features

1. Baseline performance
2. Feature shuffling
3. Performance with shuffled feature
4. Importance calculation
5. Repeat for all features

Repeat steps 2-4 for each
feature in your dataset to
get an importance score
for each feature.

Permutation feature importance

Permutation feature importance

Permutation feature importance

Permutation feature importance

Permutation feature importance

Permutation feature importance

PLS coefficients and the Permutation feature importance

Permutation feature importance

Permutation feature importance

Permutation feature importance

● ML Introduction
● Unsupervised techniques
● Reinforcement Learning
● Supervised Techniques

○ LR and PLS and RF and GPR
○ Deep Learning

■ NN
■ CNN

○ Interpretable ML
● Working Examples

Fitting a surface

log10(k) is the label

v, T are the two features

We want to test the performances of
ttwo models NN and GPR

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients
● Rate coefficients for vibrational energy transfer are calculated for collisions

between molecular nitrogen and hydrogen in a wide range of temperature
and of initial vibrational states
○ The calculations were performed by a mixed quantum-classical

method
ML Goal Predict rate coefficients for vibrational energy transfer processes
involving specific initial vibrational states, which are computationally
expensive to calculate directly.

Qizhen Hong, Loriano Storchi, Massimiliano Bartolomei, Fernando Pirani, Quanhua Sun,
Cecilia Coletti, "Inelastic N2+H2 collisions and quantum-classical rate coefficients:
large datasets and machine learning predictions" The European Physical Journal D, DOI:

10.1140/epjd/s10053-023-00688-4 (2023

GPR using Matern Kernel
v = 5/2

NN model unsinf Linear
activation in input and
output and ReLU

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients

Test set MSE values as a
function of temperature:
log10 (k) values
corresponding to a
specific temperature T
were
removed from the training
set and constitute the test
set. The three panels
correspond to processes
(5) with Δv = 1, 2, 3,
respectively

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients

Test set MSE values as a
function of initial
vibrational quantum
number v: log10 (k) values
corresponding to a
specific v were removed
from the training set and
constitute the test set.
The three panels
correspond to processes
(5) with
Δv = 1, 2, 3, respectively

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients

The test set MSE values for the two
models obtained by removing an
increasing number of systematically
selected
points, corresponding to specific v values,
from the training set, i.e., Set1, removed v
= [2; 4; 6; 8; 10; 14; 18; 22; 26; 30;
35], Set2, removed v = [1; 3; 5; 7; 9; 12;
16; 20; 24; 28; 32; 40], Set3, removed v =
[2; 3; 5; 6; 8; 9; 12; 14; 18; 20; 24; 26; 30;
32], Set4, removed v = [1; 2; 4; 5; 7; 8; 10;
12; 16; 18; 22; 24; 28; 30; 35; 40]. The
three panels correspond to processes (5)
with Δv = 1, 2, 3, respectively

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients

GPR Δv = 1

Blue [points are the predicted
ones, while the green points
are the training set

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients

Preliminary new results
after a deeper grid
search of better
hyperparameters

NN [64; 64; 64] batch
10 epochs 100

GPT Mattern Kernel v =
2

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients

GRID MIF and PLS

Machine Learning and the GRID Force-Fields
● GRID program: a computational procedure for determining energetically favourable binding sites on

molecules for functional groups of known structure through the use of PROBES.
○ The PROBE is moved through a grid of points superimposed on the target molecule (to each atoms of the target and

AtomType is assigned) . Its interaction energy with the target molecule is computed by an empirical energy
function

EXYZ = Σ[ELJ] + Σ[EHB] + Σ[EQ] + [S]
ELJ= Lennard-Jones potential EHB= hydrogen bonding interaction energy EQ=
electrostatic function S= entropic term

Machine Learning and the GRID Force-Fields
We build PLS models, each model is related to a specific AT, to improve the quality of the
Hydrogen-Bonding term EHB that is the product of three terms terms:

● Er based on the distance between the target and the probe given in kcal/mol
● The other two, both ranging in the interval 0–1. They are dimensionless functions of the angles t and p made by the hydrogen bond

(HB) at the target and the probe atoms respectively

Er assumes relative values in case of interaction with a HB acceptor or donor
complementary probe and is parametrized by two values: Emin is the strongest
hydrogen-bond attraction energy at the optimum position (Emin), and half
of the straight-line distance between donor and acceptor atom pairs which
corresponds to the strongest hydrogen-bond attraction energy (Rmin).

Sara Tortorella, Emanuele Carosati, Giovanni Bocci, Simon Cross, Gabriele Cruciani, Loriano
Storchi, "Combining Machine Learning and Quantum Mechanics Yields More Chemically-Aware
Molecular Descriptors for Medicinal Chemistry Applications", Journal of Computational

Chemistry, DOI: 10.1002/jcc.26737 (2021)

Emin → dEmin

Machine Learning and the GRID Force-Fields
The dataset is made of 66463 drug-like molecules

● We used GAMESS-US B3LYP/SVP (necessity of having a versatile basis set and method) to
compute the Electrostatic Potential (EP) for each atom

● EP is converted to the so called dEmin value using linear equation derived so that for each AT
all the resulting dEmin values always fall within an acceptable range

22 equations, each one for
each AtomType

The dEmin is our label

Machine Learning and the GRID Force-Fields

The red lines represent values of the traditional, static Emin of the GRID force field, namely -5.5 for N:= and -4.0 for N1 atom
types. dEmin, dynamic Emin

N1 Neutral flat NH eg amide (HB donor)N:= sp2 N with lone pair (HB acceptor)

Machine Learning and the GRID Force-Fields
Does chemically sound to use the dEmin in the the EHB term ?

We decided to test the correlation of
the proposed dEmin to those
experimental hydrogen-bonding (HB)
properties.

dEmin versus H-bond basicity scale
for the Kenny dataset (279 atoms, R
– Pearson = 0.85).

Machine Learning and the GRID Force-Fields
We have a good label, now we need to select the feature (descriptor) to use in the model
The molecular environment is described by a tree-structured molecular fingerprint with a
length of 10 bond distances

Machine Learning and the GRID Force-Fields
We build PLS models, each model is related to a specific AT, to improve the quality of the
Hydrogen-Bonding term EHB

Emin PLS dEmin

Machine Learning and the GRID Force-Fields
Using this approach, 22 PLS models were built relating atomic environment to dEmin for
the HB GRID atom types (some of the models results are reported validated using
leave-one-out crossvalidation)

Machine Learning and the GRID Force-Fields
More chemically aware force-field

The energy values of the isocontour surfaces
chosen for H-bond donating probe (“N1,” probe)
was 4.0 kcal/Mol

DeepGRID

DeepGRID
Two ingredients are needed:

● Deep Learning techniques
(i.e., CNN)

● GRID MIFs

Loriano Storchi, Gabriele Cruciani,
Simon Cross, "DeepGRID: Deep

Learning using GRID descriptors for
BBB prediction", Journal of

Chemical Information and Modeling,
DOI: 10.1021/acs.jcim.3c00768

(2023)

DATASET AND LABEL

Test Case: Blood Brain Barrier Permeation
● A model exists within VolSurf (PLS) – we have a baseline

● We can investigate a number of modelling approaches:
DeepGRID, Random Forest & PLS (using VS descriptors)

● There are some larger publicly available datasets
eg. LightBBB (7000 cpds)

● VolSur
f

Dataset Preparation
● VS-lgBB-332 dataset In-house dataset used to build the original VolSurf model
● Light-lgBB-416 dataset A subset of the 2105 dataset which had experimental logBB

values
● Light-BBclass-2105 dataset - Classification Generated from the Shaker/Parakkal

LightBBB dataset of 7000+ structures
○ After filtering by InChI to remove duplicates 4285 compounds remained (-40%!)
○ Given that such a large proportion of the dataset contained duplicates we filtered

also by Druglikeness to give 3464 compounds
○ 70% of the dataset removed due to duplicate InChI strings or diastereoisomerism

Dataset Splitting
● For each dataset, subsets of compounds were randomly selected:

○ Training Set: 60% - used to train the models
○ Validation Set: 20% - used to select the best hyperparameters or

to train the CNN
○ Test Set: 20% - used as a final performance check

● The same sets were used for each model

FEATURES

DeepGRID Approach
 GRAID descriptors calculated (normalised GRID MIFs, 8 channels)
Descriptors fed into a Deep Learning CNN model

Note: in this case the training and validation sets were mixed so that different viewpoints of the
same molecule were in training/validation, to allow the model to learn from the viewpoints

DeepGRID is alignment independent
 Each molecule conformation centred within a grid cage 0,0,0 to 30,30,30
27 ‘Viewpoints’ generated by rotating the molecule around each axis

MODEL

DeepGRID Model
● 3 convolutional layers, drop out and max pooling

○ extracting features and reducing the dimensionality
● Flattening layer
● 3 dense layers and drop out before the final dense layer

OTHER MODELS AND FEATURES

DeepGRID Hyperparameters optimization
Volsurf Descriptors

DeepGRID vs RF and PLS models

Volsurf3 Descriptors

Extracted features used by
the dense layersQuite some time was

needed to develop the
VS descriptors

RESULTS

VS-lgBB-332 Dataset

Lower is better Higher is better

Light-lgBB-416 dataset is more diverse
More diverse → more difficult→ all approaches give less accurate
models

Lower is better Higher is better

DeepGRID gives a robust model
● Y-Scrambling the data

affects the model, ie. It is
not overfitting

● At 5% scrambling the Test
MSE is only 17% worse,
hence the approach is
relatively robust to
erroneous data

○

Regression → Classification
● The regression models for described can also be used for classification

(BBB +/-)
● Compounds with experimental lgBB close to 0.0 may be ambiguous and

misclassified
● In this case we measured the ROC AUC at varying thresholds on the Test

Classification: VS-lgBB-332 model
● At a minimal threshold of 0.1, all models predict with >90% accuracy
● The RF model is slightly better

Classification: Light-lgBB-416 model
● At minimal threshold of 0.1, all models predict with ~90% accuracy
● All models are fairly equal

Classification Models - Light-lgBB-2105 dataset
● New classification models were built using DeepGRID and Random

Forest (with hyperparameter optimization)
● Initial attempts with DeepGRID kept stalling during learning
● Potentially due to data imbalance?
● The BBB- cpds were artificially augmented to bring the balance to

0.5:1
− successful learnin

DeepGRID Classification Models - Light-lgBB-2105
dataset
AUC Full Set: 0.97 Test Set: 0.87

RF Classification Models - Light-lgBB-2105 dataset
AUC Full Set: 0.95 Test Set: 0.84

DeepGRID model the best for classification
All models classification performance (ROC-AUC) on the 2105 dataset

DeepGRID: mixing VS descriptors and MIF
Clearance mechanism classification fro drugs two classes :

● Metabolic Clearance: This is the most complex mechanism,
involving the biotransformation of drugs into more hydrophilic
metabolites to facilitate excretion.(643 compounds)

● Renal Clearance: This mechanism involves the direct excretion of
drugs in the urine, typically for small, hydrophilic compounds. (329
compounds)

I am using augmentation techniques

DeepGRID: mixing VS descriptors and MIF
Two model are cocananated :

- Model 1 is the CNN model
- Model 2 is a simple input layer

thata is getting the VS
descriptors just before the
flattening layer

DeepGRID: mixing VS descriptors and MIF

VS descriptors are appended together with the output of
the Convolutional layers in the flatten layer

DeepGRID: mixing VS descriptors and MIF
AUC Test Set without VS: 0.83 With VS : 0.90

DeepGRID: try to understand how the CNN works
It is possible, although quite tricky, to dump the features as extracted
by the Convolutional layers:

LR and features generation

Linear Regression models predict a
dependent variable (Y) based on
independent variables (X).

The relationship between the variables
is assumed to be linear.

Models are relatively simple and easy
to interpret.

Common applications include
predicting sales, energy
consumption, and other continuous
values.

A key assumption is that the errors are
normally distributed.

Linear Regression

A Formula search
Methods, such as random forest (RF) or neural network (NN), are very efficient 36 but not always
transparent, partially blurring the comprehension of the role played by the input variables in the final
results
● Improvements toward the interpretability of such “black-box” ML models have been made

through additional methodologies, such as model-agnostic methods (i.e., permutation feature
importance)

● A ML-based approach to build sets of features (or descriptors) starting from a given set of basic
variables (e.g., atomic properties), subsequently used to construct LR models (or formulas)

Inspired by the original work of Ghiringhelli et al. prediction of the difference in energy between RS
[rocksalt\ and ZB; (zinc blende) from that optimization, a classification of the most stable crystal
structure semiconductor AB binary compounds (full dataset is made of 82 compounds)

Udaykumar Gajera, Loriano Storchi, Danila Amoroso, Francesco Delodovici, Silvia Picozzi "Towards machine
learning for microscopic mechanisms:a formula search for crystal structure stability based on atomic

properties" Journal of Applied Physics, DOI: 10.1063/5.0088177 (2022)

A Formula search
 (a) Basic atomic
properties (APs) used
to construct the
material features. (b)
Crystal structures of
RS and ZB (plot made
using the VESTA tool).
62 Gray (yellow)
spheres represent A
(B) atoms. (c)
Workflow for formula
construction,
machine-learning
methodology,
validation, and MF
selection.

A Formula search
GEN1: combine two prototype functions in the
numerator, forcing them to belong to the same
kind of APs, which is both “spatial”-like or both
“energy”-like; one prototype function is at the
denominator with the only constraint to be
non-zero

GEN2: combine two prototype functions with the
same kind of APs at the numerator and a single
prototype function at the denominator with an
argument of a different kind with respect o the
numerator ones. For instance, if AP1 in f1 (AP1)
and AP2 in f2 (AP2) are “energy” terms (i.e., EA or
HOMO), then AP3 must be a “spatial” term (i.e., rp
)

A Formula search
GEN3: combine two prototype functions at both
the numerator and denominator without any
constraints,

GEN4: combine two prototype functions with the
same physical dimensions at both the numerator
and denominator

A Formula search

1D formulas after the optimization step, along with related statistics. Notation as in Table I. RMSEs are in eV.

GRID search, for each set of weight coefficients generated
during the grid search, we also run the linear regression.
Thus, we are performing a proper formula optimization, as at
each step of the grid search, we are updating both the
weight coefficients as well as the slope and intercept
coming from the LR

A Formula search

Time needed to generate the best 1D formula and perform its optimization. All the calculations have
been performed in a PC equipped with an Intel Core i5-8500 processor and 16 GiB of RAM.

A Scoring Function
Predicting ligand-metalloenzyme binding affinity, focusing on human Carbonic Anhydrase II
(hCA II) inhibitors. It combines fragment molecular orbital (FMO) and GRID approaches,
● FMO Calculations: FMO2 calculations were performed on reduced ligand-receptor

complexes to assess binding energies and pair interaction energies.
● GRID Calculations: GRID was used to calculate hydrophobic interaction fields and

quantify hydrophobic interactions.
● Dataset: A set of benzenesulfonamide ligands of hCA II was selected as a case study.

Roberto Paciotti, Nazzareno Re,Loriano Storchi, "Combining the Fragment Molecular Orbital and GRID
Approaches for the Prediction of Ligandâ€“Metalloenzyme Binding Affinity: The Case Study of hCA II

Inhibitors", Molecules, DOI: 10.3390/molecules29153600 (2024)

A portion of the Ligand 2
structure connected to the
benzenesulfonamide is polar
compared to other ligands,
which determines, in
principle, a better
interaction with water
molecules. Thus, we
hypothesize that the its
binding pose in the
experimental conditions
assumed in the
measurement of the Ki
could be influenced by
surrounding water
molecules and be slightly
different from that observed
in the crystal structure.

A Scoring Function

To improve the binding
affinity of the
benzenesulfonamide there
should be a certain balance
between electrostatic and
hydrophobic interactions in
order to minimize the
denominator and maximize
maximize the binding affinity

A Scoring Function

Interpretable ML

Random Forrest and Permutation Feature Importance
Use the RF model not for prediction purpose but to detect how much a feature is important respect
to the others. Two ingredients:
● The permutation feature importance is defined to be the decrease in a model score when a

single feature value is randomly shuffled. This procedure breaks the relationship between
the feature and the target, thus the drop in the model score is indicative of how much the
model depends on the feature

● Random forests or random decision forests is an ensemble learning method for
classification, regression and other tasks that operates by constructing a multitude
of decision trees at training time

Leonardo Aragao, Elisabetta Ronchieri, Giuseppe Ambrosio5, Diego Ciangottini, Sara Cutini, Cristina
Duma, Pasquale Lubrano, Barbara Martelli, Davide Salomoni, Giusy Sergi, Daniele Spiga, Fabrizio Stracci,
Loriano Storchi "Air quality changes during the COVID-19 pandemic guided by robust virus-spreading data

in Italy",to Air Quality, Atmosphere & Health, DOI: 10.1007/s11869-023-01495-x (2024)

Features

Results
104 Italian provinces analysed applying
the Permutation Feature Importance
Analysis to a set of different Random
Forest models

The role of the pollutants seems not
the most important

Thank You

 Thank you for your attention.
 I welcome your questions.
 Please feel free to contact me.
 Email: loriano@storchi.org

