Introduction to Machine and Deep Learning using python
- =

;ié TECHOLUG 3*——%

University of Chieti-Pescara
INEN (Istituto Nazionale Di Fisica Nucleare) sez. Perugia
CNR SCITEC (Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”) sez. Perugia

My activities

o four Gomponent Dirac-Kohn-Sham Theory (BERTHA code)
O CNR and UNlPG \ _ hixmﬂdm.ﬂll mlr 4

o UNIPG and Mol J.scoveryTECHéwe H —

e HEP (High Energy Physics) - ML technlques and FPGA
(Field-programmable gate array) and Cloud Computing
o INFN and CERN

e Bio and Chemoinformatics
o UNICH

LINK TO THE CODE:

ML Teachlng -

loriano@storchi.org

https://github.com/lstorchi
mailto:loriano@storchi.org

Scikit-learn (also known as sklearn) is a popular and powerful open-source
Python library for machine learning.It provides a wide range of tools.
Pandas is a powerful and versatile open-source Python library for data
manipulation and analysis. It prowdes hlgh-performanee, easy-to-use data
structures and data analysis tools.™ M

TensorFlow An open-source library developed by Google for numerical
computation and large- scale maehlne Iearnlng msdy for deep neural
networks 00T

Keras A high-level AP for buddmg and tralnlng neural networks
Matplotlib is a comprehensive and widely-used plotting library in
Python. It provides a flexible and powerful way to create static,

interactive, and animated visualizations in Python

s = TECHOLUG

T

/_/.:il

ML Introduction
Unsupervised techniques
Reinforcement Learning
Supervised Techniques :

AL >

& LR and PLS and RF and GPR/| L

o Deep Learning =~
m NN
m CNN
o Interpretable ML
Working Examples

T’T 1 wT{ m

2; 7,/

‘ul I
)

3

}llll{-u‘rlll‘lll‘
) | |
=PI

ML Introduction
Unsupervised techniques
Reinforcement Learning

Supervised Techniques : =
& LRand PLSand RFand GPR/TL.

o Deep Learning ~ ° i TWW
= NN m} H L
m CNN

o Interpretable ML

Working Examples

G

HT"""”

LG

wﬁru
|
/| \
—/)

Machine Learning

Machine learning techniques can be divided into two foremost types:

o Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets ennsrstrng of mput data without Iabeled responses (i.e. clustering
algorithms)» = - —

o* Reinforcement Learning: the algorithms learn to react to an envrronment on their own. An
agent is in a situation of trial and error, where the consequences of |ts actrons have an impact on
the environment and also on the problem’s goal The agent is punrshed or rewarded on the basis of
its behavior, with the idea that, in the future it will prefer optrmal actions (i.e. our intelligent
cache system)

e Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a
model to generate reasonable predictions

LI I
um

r

Machine Learning

Traditional Programming

Program

A machine learning approach to
detecting odd and even numbers,
such as using a binary
classification model trained on a
dataset of numbers and their
parity, differs from the standard
approach, which involves dividing

the number by 2 and checking the
remainder.

Machine Learning - Features

Features, also known as descriptors, are the mputl@- o 7
Varlables used to make predlctlons 4 Al ALY

In cheminformatics, features often mclude\ Al L 4
molecular weight, chemical structure and'physical:

properties. —

They can be calculated or experlmentaIIyU HWWNW == N
determined. ,
Careful selection of features is crucial for model =
performance.

Feature engineering techniques can improve
model accuracy.

Machine Learning

Regression

What will be the temperature
tomorrow?

0 0 MW W W 00 10 1D W WO 10 W0 1N M

Fahrenheit

Classification

Will it be hot or cold
tomorrow?

0 W %0 X M N W0 10 T 10 WO 150 180 T M0 MO M0 20 20 B

Fahrenheit

Features could be:
the day of the year
and the today
temperature

Label: is the
temperature for the
regression and

ML Introduction
Unsupervised techniques
Reinforcement Learning
Supervised Techniques :

Mumgmummu; |

& LR and PLS and RF and GPR/1 L

o Deep Learning =~ T TS

m NN

m CNN
o Interpretable ML
Working Examples

= .

g:
-E'i ,f/—
g;
5

Machine Learning

Machine !sgiiiing techniques can be divided into two foremost types:

o Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets ennsrstrng of mput data without Iabeled responses (i.e. clustering
aigerithms) P = —

o* Reinforcement learm“g the :lrmrli'th learn t(] react tU an en\llrnnment nn thaoir auwe Ao
agent is in a situation of trial and error, where the consequences of |ts actrons have an |mpact on
the environment and also on the problem’s goal The agent is punrshed or rewarded on the basis of
its behavior, with the idea that, in the future it will prefer optrmal actions (i.e. our intelligent
cache system)

e Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a

model to generate reasonable predictions

LI I
um

r

Unsupervised Machine Learning

e Clustering: Clustering algorithms group similar data points together based on their
inherent structure or features. Some popular clustering methods include:

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

o “K-Means Clustering: Partitions data into 'K clusters, where each data point belongs

QT

« ato the cluster with the nearest mean/] | _ =
e Dimensionality Reduction: Teehnrques for reducing the number of features (dimensions)

in a dataset while retaining as mueh mformatren as possible. This can help with
visualization, noise removal, and |mpr0vrng the performance of other ML algorithms.
Some widely used methods are:
o Principal Component Analysis (PCA): Transforms data into a new set of uncorrelated
variables (principal components) that capture the maximum variance in the data.

Clustering K-means

Two-dimensional data can be easily wsuallzed e s

for intuitive understanding..

*K-means aims to m|n|m|ze W|th|n cluster
distance and maximize between cIuster
distance when we are eon3|der|ng [l

N-dimensional space.

F: . 1"-,
e Ism Clustuters .

l

JRETL

- <C Cinaerieiml - < o
~N ! 2
(5,]

20
s
Mekelll
e iy 1som S b
< OF %S? 1000 - 200F .. . 1000 1000 100
Wistuers st = Clussters

'Mananthinanakanghi

Clustering K-means

In k-means clustering, the objects are divided into several
clusters mentloned by the number K." So if we say K = 2, the

.................... hdokhddbddohd!

. - = ML B

o The features or characteristics are compared, and aII objects
having similar characteristics are clustered together./, ||

e The algorithm works by first randomly plcklng some central points
(called centroids) and then assigning every data point to the
nearest centroid.

e (Once that’s done, it recalculates the centroids based on the new
groupings and repeats the process until the clusters make sense

(=)
(==
[Sty
<D
(o)
—t
(7]
QO
-
CD
Q.
=.
ol
<D
ol
=1
et
(=)
e
=
(=)
=
e
(7¢)
—r
cD
|-
w
(o)
—
QO
-
[= B
(o)
No:
T li

7' |

H

Il

Clustering K-means

Grouping Similar Data Points

K-Means is designed to cluster data points that share common traits, allowing

patterns or trends to emerge. -
- - —= ML ==

= TECHOLUG =

F

Minimizing Within-Cluster Dlstance SN o=
Keep data points in each group as close to the clusters centroid as possible

Maximizing Between-Cluster Distance
K-Means also aims to maintain clear separation between different clusters.

Clustering K-means: Example and Code

import matplotlib.pyplot as
import |
e X = []
y = []
for 1 in range(10):
X .append(random.randint(1,
y.append (om. randint (1,

t.scatter(x, y)
.show()

Clustering K-means: Example and Code

Elbow method

from sklearn.cluster import

data = list(zip(x, y))
inertias = []

for i in rai (L,11):
kmeans = K (n clusters=i)
kmeans.fit(data) \
inertias.append(kmeans.inertia) e daes
.plot(range(1,11), inertias, marker='o')
t.title('Elbow method') The elbow method shows that 3 is
t.xlabel('Number of clusters') a good value for K, so we retrain
t.ylabel('Inertia’) and visualize the result:

t.show()

Clustering K-means: Example and Code

inertia is a key concept that measures the compactness

of your clusters. Think of it as a way to quantify how

tightly grouped the data points are within each cluster =
Inertia is calculated by summlng the squared dlstanceS*
between each data point and its aSS|gned cluster center‘
(centroid). SR SR
Find the Elbow: Look for the point on the curve where
the rate of decrease in inertia starts to slow down
significantly. This point resembles an elbow, hence the

name "elbow method.

Clustering K-means: Example and Code

kmeans = (n clusters=3)
kmeans.fit(data)

.scatter(x, y, c=kmeans.labels)
.Show()

ZJ LN

Clustering K-means: Example and Code

.scatter(x, y, c=kmeans.labels)

.scatter(kmeans.cluster centers [:, 0], \
kmeans.cluster centers [:, 1], \
c='red')

.Show()

2 BLIBISIHEISS

= INVIEE —
Principal component analy3|s (PCA)

ﬂI mﬂ ﬂﬂ>“

Dimensionality Reduction:: PCA

Principal component analysis, or PCA, is a statistical procedure that allows you to

summarize the information content in large data tables by means of a smaller set

of “summary indices T M=‘

- e Prmclpal components are new variables that are constructed as linear

combinations or mixtures of the initial Varlables

e These comhinations are done in such a way that the new variables
(i.e., principal components) are uncorrelated and most of the
information within the initial variables is squeezed or compressed
into the first components

e Practically it consists on a diagonalization of the covariance matrix

Dimensionality Reduction:: PCA

How can you

observe from the figure, the
first principal component (PC
1) is in the direction

of maximum variance and its
origin is located in the
average value of the variable.
The residual variance is
represented by the second
principal component

(PC 2), in the direction
perpendicular to the first
component.

import pandas as pd

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"

features = ['sepal length', 'sepal width', 'petal length', 'petal width']
label = ['target']

allnames = []
allnames.extend(features)
allnames.extend|(label))

df = pd.read csv(url, names=allnames)
print(df.head())
print(df.columns)

Dimensionality Reduction:: PCA

UC Irvine Machine Learning Repository
The data set contains 3 classes of N mstances each, where each class
refers to a type of iris plant ‘/

- - ' *;i;;§ : A(
sepal length sepal ‘width petal length pe%gi width target
0 Dl 3D 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
i3 4.6 5 Sl S 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
Index(['sepal length', 'sepal width', 'petal length', 'petal width', 'targ

&;g N ﬂ WLl mﬂhé

O /—:’; NAI g/“r
~ SCALE the Data

;ﬂmmgW

([‘

from sklearn.preprocessing import StandardScaler

x = df.loc[:, features].values

y = df.loc[:,label].values
print{x[0:5])

print()

x = StandardScaler().fit transform(x)
print(x[p:51])

Dimensionality Reduction:: PCA

Scale the data so: mean = 0 and variance = 1

sl bl s M

Ul

)
.
GEREEG
" o Nio
w w wwWw
>

[[-0.90068117 1.03205722 -1.3412724 -1.31297673]
[-1.14301691 -0.1249576 -1.3412724 -1.31297673]
[-1.38535265 0.33784833 -1.39813811 -1.31297673]
[-1.50652052 0.10644536 -1.2844067 -1.31297673]
[-1c]

02184904 1.26346019 -1.3412724 -1.31297673]]

]

| RUN the PCA

)) SR

g [

\%_\“j__ ﬁﬁllhllﬂﬂﬁg
v; NAI gj:;f

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

pcs = pca.fit transform(x)

pcsdf2d = pd.DataFrame(data = pcs
~, columns = ['PC 1', 'PC 2'])

pca = PCA(n_components=3)
pcs = pca.fit transform(x)
pcsdf3d = pd.DataFrame(data = pcs
. ;. eolumns =N[PE 1,0 PC 2" S¢pE 341}

finaldf2d = pd.concat([pcsdf2d, df[label]], axis
finaldf3d = pd.concat([pcsdf3d, df[label]], axis
print(finaldf2d.head())
print(finaldf3d.head())

Dimensionality Reduction:: PCA

Run the PCA

S~ W N =R O

~ W IN =R O

PN

. 264542
. 086426
.367950
.304197
.388777

PC 1

. 264542
.086426
.367950
.304197
.388777

<> B < i <> BN <> B <>

(o< o B o (<)

PER2

.505704
.655405
.318477
975368
.674767

PC 2

.505704
.655405
.318477
2153068
.674767

target

Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

PC 3
-0.121943
-0.227251
0.051480
0.098860
0.021428

target

Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Use the PCA to represent the data (elustermg)

Dimensionality Reduction:: PCA

import matplotlib.pyplot as plt

fig = plt.figure(figsize = (8,8))

ax = fig.add subplot(1,1,1) {‘J{y
ax.set xlabel('PC 1', fontsize 15)

ax.set ylabel('PC 2', fontsize 15)
ax.set title('2D PCA', fontsize = 20)

stargets = set(df[label].values.flatten()) HOLUG
targets = list(stargets)

issert len() == i
cators = U'rr 1g', '] I

for target, color in zip(targets,colors):
indices = finaldf2d[label[0]] == target
ax.scatter(finaldf2d.loc[indices, 'PC 1']
, finaldf2d.loc[indices, 'PC 2']

— ® Iris-setosa
ACT COlO 7 @ Iris-virginica
S I=050) @ Iris-versicolor

plt.legend(targets, loc='lower left')
ax.grid()

Dimensionality Reduction:: PCA

fig = plt.figure(figsize = (8,8))
ax = fig.add subplot(11ll, projection='3d")

ax.set xlabel('PC 1', fontsize = 15) I; :Fﬁﬁif
ax.set ylabel('PC 2', fontsize = 15) 3
ax.set zlabel('PC 3', fontsize = 15) g
ax.set title('3D PCA', fontsize = 20) -
z
3
for target, color in zip(targets,colors): E:

indices = finaldf3d[label[0]] == target
ax.scatter(finaldf3d.loc[indices, 'PC 1']
, finaldf3d.loc[indices, 'PC 2']
, finaldf3d.loc[indices, 'PC 3']
¢ = coler
, S = 50)
ax.legend(targets)
ax.grid()

v/ 0.0s

Dimensionality Reduction:: PCA

print(pca2d.explained variance ratio)
[0.72770452 0.23030523]

print(pca2d.explained variance ratio .sum()) 0.9580097536148199
[0.72770452 0.23030523 0.03683832]

: : : . 0.9948480731910938
print(pca3d.explained variance ratio) Jlll ; ; ;
print(pca3d.explained variance ratio_ .sum()) Explained Variance Ratio by Components
0.7
N=3
ind = np.arange(1,N+1) I_ 0.6
width = 0.25 LU |8
e 0.5
d2vals = list(pca2d.explained variance ratio) o §
d2vals.extend([0])]II 8 04
plt.bar(ind, d2vals, width, color = 'r') s
d3vals = pca3d.explained variance ratio 203
plt.bar(ind+width, d3vals, width, color='g") s
w

0.2

plt.xlabel("Components")
plt.ylabel('Explained Variance Ratio')

plt.title("Explained Variance Ratio by Components")

©
=

o
(=]

plt:xticks(ind+(width/2);['PC 1', *PC 2", "PC 3%])
plt.show()

mmﬂnmhﬂm :

i!% NAI =0

Importance of the features W|th|n each components

| UH mﬂ I e

il

Dimensionality Reduction:: PCA

Component-specific importance: This method provides the importance
of each feature within a specific principal component. A feature might

be important in one PC but less |mportant in another
5 ——= NAI =y

print(pca2d.components)
for 1 in range(pca2d.components .shape[0]):

print(“PC * ; 1+l1, "= %)
for j in range(pca2d.components .shape[l]):

print(" %6.2f"%(pca2d.components [1i,j]**2) ,\
§ ", features[j])

Dimensionality Reduction:: PCA

Component-cnecifie imnnrtanee: Thic methad nravidec the imngrtance

of each fe
be import;

print(p
for 1 1
pri
for

[[0.52237162 -0.26335492 0.58125401 0.56561105]
[0.37231836 0.92555649 0.02109478 0.06541577]]

' PC

PC

1

O OO ONOOOO

27
.07
.34
e 32

.14
.86
.00
.00

* K K K

* K X X

sepal
sepal
petal
petal

sepal
sepal
petal
petal

length
width
length
width

length
width
length
width

) might

- is _:7; ~
— = } =

Dlmensmnallty reductlon when usmg a Superwsed technique

e -

m

from sklearn.model selection import train_test split
from sklearn.linear model import LogisticRegression
from sklearn import metrics

x_train, x_test, y_train, y_test = train_test_split|(\
. K., y, test_size=0.2, random_state=0))

trainsamples = x train.shape[0]

testsamples = x test.shape[0]

logreg = LogisticRegression()

print(x train.shape)

print(y train.shape)

logreg.fit(x train, y train.reshape(trainsamples))

y pred = logreg.predict(x test)

print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(\
| logreg.score(x test, y test.reshape(testsamples))))

from sklearn.model selection import train_test split
from sklearn.linear model import LogisticRegression
from sklearn import metrics

x_train, x_test, y_train, y_test = train_test_split|(\
. K., y, test_size=0.2, random_state=0))

trainsamples = x train.shape[0]
testsamples = x test.shape[0]
logreg = LogisticRegression()
print(x _train.shape)

print(y train.shape)

logrnn fit+lv +rain v train _rochanalt+raincamnlac))
y p (120, 4)
i} (120, 1)
Accuracy of logistic regression classifier on test set: 1.00

for n in range(1l, x.shape[l]+1):
x = df.loc[:, features].values
y = df.loc[:,label].values
pca = PCA(n_components=n)
x t = pca.fit transform(StandardScaler().fit transform(x))

x_train, x _test, y train, y test = train test split(\

 x_t, y, test_size=0.2, random_state=0)

trainsamples = x train.shape[0]

testsamples = x test.shape[0]

print(x_train.shape)

print(y train.shape)

logreg = LogisticRegression()

logreg.fit(x train, y train.reshape(trainsamples))

y pred = logreg.predict(x test)

print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(
\ logreg.score(x test, y test.reshape(testsamples))))

for n in range(1l, x.shape[l]+1):
| df.locl:, £
.loc[:,label].values
= PCA(n_components=n)
pca fit transform(StandardScaler().fit transform(x))
x test, y train, y test = train test split

X t, y, testy
trainsamples = x_train.shape[@] :
testsamples = x_test.shape[0] Not the best option as we should scale,

print(x_train.shape) train the PCA only on the training set .

print(y train.shape) .
logres = Logistichaqression() See the afternoon exercise

logreg.fit(x train, y train.reshape(trainsamples))
y pred = logreg.predict(x test)

print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(
\ logreg.score(x test, y test.reshape(testsamples))))

in range(1l, x.shape[l]+1):

= df.loc[:, features].values

df.loc[:,label].values

pca = P
Xxt=p
x_train
x t
trainsa
testsam
print(x
print(y
logreg
logreg.
y pred
print(’
log

(120, 1)
(120, 1)
Accuracy
(120, 2)
(120, 1)
Accuracy
(120, 3)
(120, 1)
Accuracy
(120, 4)
(126)
Accuracy

of logistic

of logistic

of logistic

of logistic

regression classifier on test set:

regression classifier on test set:

regression classifier on test set:

regression classifier on test set:

ML Introduction
Unsupervised techniques
Reinforcement Learning
Supervised Techniques :

Mumgmummu; |

& LR and PLS and RF and GPR/1 L

o Deep Learning =~ T TS

m NN

m CNN
o Interpretable ML
Working Examples

= .

g:
-E'i ,f/—
g;
5

Machine | earnino

Tommaso Tedeschi, Marco Baioletti, Diego Ciangottini, Valentina Poggioni,
Daniele Spiga, Loriano Storchi, Mirco Tracolli, "Smart Caching in a Data Lake
for High Energy Physics Analysis", Journal of Grid Computing, DOI:
10.1007/s10723-023-09664-z (2023)

i a——

algorithms ——— g/ ;
> neinforcement Learning: the algorlthms learn to react to an environment on thelr own. An

SN T T

agent is in a situation of trial and error, where the consequences of |ts actions have an impact on

3 SO ——

the environment and also on the problems goal. The agent is pqnlﬁhgd or rewarded on the basis of
its behavior, with the idea that, in the future, |t WI|| prefer optlmal actions (i.e. our intelligent
cache syswem) :

e Supervised: used when you want to preaict or expiain the aata you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a

model to generate reasonable predictions

Reinforcement Learning: Q-Learning

Reinforcement Learning lies between the spectrum of Supervised Learning and
Unsupervised Learning,. How does Reinforcement Learning work in a broader

sense ?

Addd AL AL LLLLALLLLLLLLT —

—— =
\ = = =
‘- —

An "agent’ is exposed te the environment -

T~ ot~ v~

The situations they encounter are states__ ?

Our agents react by perfermmg an action to transition from one "state" to
another "state,”

After the transition, they may receive a reward or penalty in return

The policy is the strategy of choosing an action given a state in expectation

of better outcomes.

Reinforcement Learning: Q-Learning

Environment

States ACTION

— _

Rewards

Reinforcement Learning: Q-Learning

Environment

States REWARD

Actions

Rewards

Reinforcement Learning: Q-Learning

Several approaches
1. Value-Based Methods , (0
e
2. Pollcy Based Methods S ,
~3.Model-Based Methods = NAL. =

TECHOLUE

HT"""”

(e

\»
1

I\

pmﬁr
|
/‘,, [l

PPRYPRETT RO PP R T R

| will give you a quick overview about one of the Value Based Methods that is
the:

Q-Learning: A model-free approach where an agent learns an action-value
function (Q-function) that estimates the expected reward for taking a given
action in a given state.

Reinforcement Learning: Q-Learning

Simple example (no code)
/A robot has to cross a maze and

...-- ““““reach the end point. There are mines,
- -E..E. I\./land the robot can only move one tile
CCCCC at a time. If the robot steps onto a
[mine, the robot is dead. The robot
~has to reach the end point in the
shortest time possible.

Reinforcement Learning: Q-Learning

Simple example (no code) e The robot loses 1 point at each
step. (force the robot to take the

...-. I\h;; Ishortest path).
) Mine, the point loss is 100 and th
o —

pomt
e |[f the robot reaches the end goal,
the robot gets 100 points.

Reinforcement Learning: Q-Learning

paors: T = | The Q-Table, the columns are the
| actions and the rows are the states.
e Actions Space: 4 possible actions
I\/move up, down, left or right
TECHStates space: 5 state start,
Power [T nothing (blank square), power,
mine, end
e Rewards: loss 1 for each step,
loss 100 for mine, gain 100 for
end , gain 1 for power

Start

Nothing / Blank

Mines

END

<l @z; gl

=" _\
“'E\ —
s ey

-:g

| F?E

NAI
Procedure

&

Reinforcement Learning: Q-Learning

Initialize Q-table
l

Choose an action
l

Perform action

After a lot of Iterations, l
a good Q-table is ready

Measure reward
|

Update Q-table

. 113 [] ‘ LY A=
4 i r/

o —— =

=] "m1 =

5 —_—

Initial Q Table and how to chooSe an actlon

Uﬂ mmm LI,L\W 1

Reinforcement Learning: Q-Learning

e Initialize the Q values:, randomly, in
|, this example we will initialize all

- values to zero
N\e/1 Choose an action (a) in the state (s)

TECHOLbased on the Q-Table

t 11167 One can use different strategies
to select the best action
o in this case the cation is chosen
randomly using epsilon greedy
strategy

Reinforcement Learning: Q-Learning

if random() < €
random action _ LD mlr 4
otherwise = E—

==

* action = argmax(ﬂ(state a)) for all actlonsa

LLLLLLLL
——F §7 =

T I e T Ty A) [
argmax(Q(state, a)) for all actlons a: This part calculates the action with the

highest Q-value in the current state

Reinforcement Learning: Q-Learning

if € = 0.1 (10% chance of exploration)., so

| 90% of times we select the best action

accordlngly to 1o argmax

"“if we are in state 0 = Start in this case
clearly the best action is Right -~

sminisininES

Al S =
i\\\Eg :’ ',
— ==

=BV I —

% HOW to update the Q- values

WW mmm &Qfﬁ[

Reinforcement Learning: Q-Learning

Q(s, a) = As, a) + o [R(s, a) + y * max(Q(s’, a)) - As, a)]

A h &UAM m,, ML “l!

-
=

- - —1 ML B
TECHOLUa (alpha): The learning rate (a
Q(s, a): The current T mvalue between O and 1). It 4
Q-value for taking determines how much we update
action a in state s. the Q-value based on new

information. A higher learning rate
means bigger updates.

Reinforcement Learning: Q-Learning

Q(s, a) = Q(s, a) + o [R(s, a) + y * max(Q(s', a)) - Q(s, a)]

h‘;;s‘;u‘ﬂ;.&xﬁn‘lﬁhm.!l

- = VI
¢ reenotvy (gamma): The discount factor (a
R(s, a): The *‘?‘?TfT*j'L‘"T’TTT*U":"vaIue between 0 and 1). It determines
immediate reward ~ —— how much we value future rewards
received after compared to immediate rewards. A
taking action a in higher discount factor means we care

state s. more about future rewards.

Reinforcement Learning: Q-Learning
Q(s, a) = Q(s, a) + o [R(s, a) + y * max(Q(s',) - Q(s, a)]

Ll L ‘m.uH,..; s
*f TECHOLUS The new state the agent transitions
max(Q(s', a)): The maximum 7777777771 Rl 'to after taking action a in state s.
Q-value for the next state (s') 7
after taking action a. This
represents the hest possible

outcome we expect in the future.

Reinforcement Learning: Q-Learning

Current state (s): 0

| Action (a): Up

State 0 : ““Reward (R(s, a)): 1 (let's say it gets a small
State 1 preward for moving up)

"*Next state (s): 1

State 2 (Learning rate (a): 0.1 ('.

~ - Discount factor (y): 0.9

State3 7| - Current Q-value (Q(s, a)): 10 (from the
Q-table)

max(Q(s, a)): 12 (the highest Q-value in
state 1is for action "Right")

State 4

Reinforcement Learning: Q-Learning
0((0, 0), Up)=10+0.1[1+ 0.9 *12-10]

| =10+0.1*18
State 0 .] “ =10.18
State 1 i ML!E 5 ,

State 2

State 3

State 4

ML Introduction
Unsupervised techniques
Reinforcement Learning

Supervised Techniques ¢ =
& LRand PLSandRFand GPR/TL.

o Deep Learning ~ ° i TWW
= NN m} H L
m CNN

o Interpretable ML

Working Examples

G

HT"""”

LG

wﬁru
|
/| \
—/)

Machine Learning

Machine learning techniques can be divided into two foremost types:

Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets ennsrstrng of mput data without Iabeled responses (i.e. clustering
algorithms)» = - —

Reinforcement Learning: the algorithms learn to react to an enwronment on their own. An
agent is in a situation of trial and error, where the consequences of |ts actrons have an impact on
the environment and also on the problem’s goal The agent is punrshed or rewarded on the basis of
its behavior, with the ide2 *hat, i e Tuture, it will prefer optimal actions (i.t. vui into!lioent
cache system)

Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a
model to generate reasonable predictions

LI I
um

r

Supervised Machine Learning

Regression

What will be the temperature
tomorrow?

D WV 0 0 0 MW W M W0 D W WO 10 WO 1 180 10

Classification

Will it be hot or cold
tomorrow?

Fahrenheit

W % 8 N M 0 00 10 10 N0 WO 10 180 1 MO WO W0 20 20 D

Fahrenheit

Features could be:
the day of the year
and the today
temperature

Label: is the
temperature for the
regression and

Machine Learning

Supervised: used when you want to predict or explain the data you possess. A supervised algorithm takes a

known set of input data and known responses to the data (output) and trains a model to generate reasonable
AL

predictions =
—— oV -
& -Ez;ﬁ/;j 7 Y _ Fa,b’c (X)
Build Model Q"T N ®
' % S s (‘ o Labels: dependent Features (descriptors):
F(X1, X2)=Y variables (e.g. pK. independent variables
values , could be also a (e.g. Molecular weight,
< 1, class pass or not the fingerprints)
B =
F’rcd ct Models: Linear Regression,

Random Forest, Artificial
Neural Network , Partial Leat
Square

Mew Data Use “odel

ML Introduction
Unsupervised techniques
Reinforcement Learning
Supervised Techniques :

Mumgmummu; |

® LR and PLS and RF and GPR/1 L

o Deep Learning =~ T TS

m NN

m CNN
o Interpretable ML
Working Examples

= .

g:
-E'i ,f/—
g;
5

Linear Regression

“Implementing linear regression of
..'some dependent variable y on the
I_set of independent variables x = (x1,
Lo Xr), Where 7 is the number of
-predictors, you assume a linear

" relationship between y and x: y = o
Pt Brxr te.

df sal = pd.read csv('Salary Data.csv')
df sal.head()

v 0.0s 8 Open 'df_sal'in Data Wrangler

YearsExperience Salary
1.1 39343.0
1.3 46205.0
1.5 3771321.0
2.0 43525.0
2.2 39891.0

Linear Regression

plt.scatter(df sal['YearsExperience'], \
df sal['Salary'], color = 'lightcoral')

plt.title('Salary vs Experience')
plt.xlabel('Years of Experience') Salary vs Experience

plt.ylabel('Salary'
plt.show()

120000

100000

ZUUJ)|

Years of Experience

df sal.ilaoc[:z, :1]
= df sal.ilogf:, 1:]
_train, X test, y train, y test = train test split(X, y, \
| ~ test size = 0.2, random_state = 0)
regressor = LinearRegression()
regressor.fit(X train, y train)
print(f'Coefficient: {regressor.coef }')

print(f'Intercept: {regressor.intercept }')
y pred_test = regressor.predict(X_ test)
y pred train = regressor.predict(X train)

Coefficient: [[9312.57512673]]
Intercept: [26780.09915063]

Linear Regression

plt.scatter(y train, y pred train, color = 'red')
plt.scatter(y test, y pred test, color='blue')
plt.title('Scatterplot')
plt.xlabel('True Values')
plt.ylabel('Predicted Values') 120000
plt.show() 100000

Scatterplot

80000

=
o
>
o
U
=
2
°
v
a

60000

40000

40000 60000 80000 100000 120000
Tue Values

Linear Regression

R% measures how well the
regression line fits the data points.
umnm,‘.ulmimf
RMSE stands for Root Mean Squared
TEcHoError It's a common metric used to
""""" 1mevaluate the accuracy ofa
| regressmn model, or more generally,
to measure the difference between
predicted values and actual values.

from sklearn.metrics import r2 score

from sklearn.metrics import mean—Ssguared—error

r2 train = r2 score(y train, y pred train)

r2_test = r2 score(y test, y pred test)

rmse _train = np.sqrt(mean—sguared—error(y train, y pred train))
rmse test = np.sqrt(mean—sguared—error(y test, y pred test))
print(f'R2 traint {r2 train}')

print(f'R2 test: {r2 test}') R2 train: 0.9411949620562126
print(f'RMSE train: {rmse train}') R2 test: 0.988169515729126
print(f'RMSE test: {rmse test}') RMSE train: 6012.459573099956
¢ RMSE test: 3580.979237321345

Partial Least Squares Approach

It is a linear relation but instead of the
pure X variables we are using LV (Latent
Variables) similar to PCR (Principal
§ Components Regression) but LV are build
to “better correlate” also Y variable
respect to PC (Principal Components).

Partial Least Squares Approach

 used to
‘% The hyperparameter here is represented by the °

number of latente variables used emoved (eg.
Itis a lin the number
e d looking for
{)Prtirg:lipa set while
u dl'c vunu W VGLLEGI LUTIGIALG . .
also Y variable respect to PC increasing the number of LV (Latente

(Principal Components).

Variables)

Partial Least Squares Approach

Both PLS and PCR perform multiple linear regression, that is they build
a linear model, Y=XB+EY=XB+E- il

n PCR (Principal Component Regression)) the set of measurements XX
is transformed into an equivalent set X'=XWX'=XW by a linear
transformation WW, such that all the new ‘features (which are theg,
principal components) are linearly independent.

PLS is based on finding a similar linear transformation, but
accomplishes the same task by maximising the covariance between YY
and X'X

df = pd.read csv('./data/fingerpls.txt', sep=' ', header=None)
print(df.head())

= df.iloc[:, 1:-1].values

= X.astype(float)

= df.iloc[:, -1].values 47748 2

71274 4

print(X.shape) 99679 2

126628 1

print(y.shape) 127995 1

3023 3024 3025 3026 3027 3028 3029 303 3031
0 0 0 0 0 0 -2.87789
-4.41142

-0.99876

-3.92674

-2..63751

[5 rows x 3032 columns]
(207, 3030)
(207,)

Fingweorints

The molecular environment is described by a tree-structured molecular fingerprint with a
length of 10 bond distances eI

NN—
—

& | ML
. ‘ = TECHOLUG
© 1 8 N 3H 122 =
1 2 9C.3326 11 C.3 326 R
2 2 12C.3 629 160 C.3 629)
3 1 7 N.3ar 1016
4 1 5 C.ar+ 1250
5 2 4 NPYM 1766 6 NPYM 1706
6 2 3 C.ar+ 1856 1 C.ar+ 1856

Fingweorints

The If we consider 10 atom types and a fingerprint with a depth of 7

leng’

00

Partial Least Squares Approach

Cross validation K-folds:

e [ata Sphttmg \ _ hixmﬂdm.ﬂll Ul
_ 0 “the dataset is randomly divided into K equal 3|zed parts (folds).
. Tralnlng and Testing: & "ectoloe ;

o The model is tralned K separate times.
o In each iteration, K-1 folds are used for tralnlng the model, and the
remaining 1 fold is used for testing.
This way, each fold gets a chance to he the test set while the rest
are used for training.

Partial Least Squares Approach

Performance Evaluation:
g A mﬂdm;..ﬂh mlr 4

e For each iteration, a performance metric (e g., accuracy, precision,
recal, RMSE) is calculated on the held- out test fold.

e This results in K performance scores.jm | -

e The final performance score is calculated by averaging the K individual
scores. This provides a more robust estimate of the model's
generalization performance compared to a single train-test split.

mses []
r2s = |1
percdiff = []
for n in range(1l, 20):
pls = PLSRegression(n_components=n)

y pred = cross val predict(pls, X, y, cv=10)
mse = mean—sguared—error(y, y pred)

r2 = r2 score(y, y pred)

mses.append(mse)

r2s.append(r2)

ifoni> 1

| percdiff.append((mses[-2] - mses[-1]) / mses[-2] * 100)
else:

| percdiff.append(100)

Partial Least Squares Approach

plt
plt
plt
plt

plt
plt

.plot(range(1l, 20), mses, label='MSE')
.plot(range(1l, 20), r2s, label='R2'")
.legend()

.show()

.plot(range(1l, 20), percdiff, label='Percentage di
.legend()
plt.

show () —— Percentage difference

B splitting the dataset into the Training set and Test set

from sklearn.model selection import train_test split

X train, X test, y train, y test = train_test split(X, y, test size = 0.2, \
7 randon_state = 0)

build a PLS model using 12 components

pls = PLSRegression(n_components=11)

pis.fit(X train, y train)

y pred test = pls.predict(X test)

msetest = mean—Sguared—error(y test, y pred test)
r2test = r2 score(y test, y pred test)

y pred train = pls.predict(X train)
msetrain = mean—sguared—error(y train, y pred train)

r2train = r2 score(y train, y pred train)

Partial Least Squares Approack

plt.scatter(y test, y pred test, color='blue')

plt.scatter(y train, y pred train, color='red')

plt.title('Predicted vs True values')

plt.xlabel('True values')

plt.ylabel('Predicted values') -3
Tue values

plt.show()

print('MSE test:', msetest)

print('R2 test:', r2test) 2
print('MSE train:', msetrain) %
print('R2 train:', r2train) §

MSE test: 0.36049041720894454
R2 test: 0.8382020928663912
MSE train: 0.014821067700162026 QOutlier
R2 train: 0.992527008294187

S llile= |

;__iRF and classmcatlon | gf
I e =

Decision Tree

Imagine you're trying to decide whether to
go to a party. You might con3|der factorsliLl
Ilke - =

- f,f; = N L

IRE € 5 @181

1. Weather: [s it ralnmg or sunny
2. Friends: Are your friends gomg? mﬂ
3. Time:Is it a weeknight or weekend?

You could use a decision tree to map out
your decision-making process

Friends going? Friends going?
| | I |

——————————————— Yes No

Yes \[o) No Go

| I |
Go Stay Stay

Stay home

Random Forest Approach

e Imagine you have a complex problem to solve, and you gather a group of
experts from different fields to provide their input. Each expert provides their
opinion based on their expertise and experience. Then, the experts would vote
to arrive at a final decision, 1MIL. = [«

e Inarandom forest classmcatlon multiple decision trees are created using
different random subsets of the data and features. Each decision tree is like
an expert, providing its opinion on how to classify the data.

e Predictions are made by calculating the prediction for each decision tree and
then taking the most popular result. (For regression, predictions use an

averaging technique instead.)

1
Pemsr)

M
:
i
:
;
:
M
;

Random Forest Approach

Here we will build a classification model so let’s define some metrics:
True Positive (TP): The model correctly predlcted spam, and it was

actually spam. = BNV I —
True Negative (TN): The model correctly predlcted not spam, and it
was actually not spam. @

False Positive (FP) (Type I Error) The model predicted spam, hut it

was actually not spam (a false alarm).
False Negative (FN) (Type Il Error): The model predicted not spam,

but it was actually spam (a missed detection).

Random Forest Approach

Confusion Matrix

B AL =

C =
=

Predicted Class1 Predicted Class 0
Truly Class 1 |True Positive (TP) False Negative (FN)

_—

Truly Class 0 |False Positive (FP) True Negative (TN)

Random Forest Approach

Recall = TP / (TP + EN) essentially measures the ability of a
classifier to find all the positive instances in your datase
« Accuracy = (TP +TIN) /(TP + TN + FP + EN) is a common
metric that measures the overall correctness of a model's
"predictions o
Precision = TP / (TP + FP)evaluating the performance of a
classifier, particularly when you want to minimize false
positives

df = pd.read csv('./data/bbb.csv', sep=";")

df = df[df['Objects'].str.contains(' c0')]

df['Objects'] = df['Objects'].str.replace(' c0', '")

df label = pd.read csv('./data/bbb label.csv', sep=' ', header=None)

give a name to the columns

df label.columns = ['Objects', 'label']

select only row with the same name as in the label file
df = df[df['Objects'].isin(df label['Objects'])]

df = df.set index('Objects')

df label = df label.set index('Objects')

add all in a single dataframe

df = df.join(df label)

print(df.head())

df = pd.read csv('
df = df[df['Object
df['Objects'] = df
df label = pd.read
give a name to t
df label.columns =
select only row !
df = df[df['Object
df = df.set index(
df label = df labe
add all in a sin
df = df.join(df la

Objects

MOL 0001
MOL 0002
MOL 0004
MOL 0009
MOL 0012

Objects

MOL 0001
MOL 0002
MOL 0004
MOL 0009
MOL 0012

Objects

MOL 0001
MOL 0002
MOL 0004
MOL 0009

482.581
637.0629
368.758
414.276
316.626

W5

.21149
.33090

G

L4LgS

.067867
.137969
012077
.315401
.158180

0

0

DD8 Tlabel

.500
=375
.000
.750

Wl

.33424 1098.380
.58788 1294.120
798.000
898.375
.17786 692.250

DD1

.750
875
.000
.500
.000

W2

579.750
597.500
324.500
406.875
323.000

DD2

32.500
37.500
0.000
20.125
0.000

print(df.head())

GRID Force-Fields

o GRID program: a computational procedure for determining energetically favourable binding sites on

molecules for functional groups of known structure through the use of PROBES.
o The PROBE is moved through a grid of points superimposed on the target molecule (to each atoms of the target and

‘@mType is assigned) . Its interaction energy with the target molecule is computed by an empirical energy

» e DO = B\V/I . ——
E, = Lennard-Jones potential E,.= hydrogen bonding interaction energy E,=

EXYZ = E[ELJ] + E[EHB] + EE[EQ] + [S]“Lelectrostagc function $= entropic term

A

Volsurf Descriptors

W1-W§
ID1-108

Descripeion

Molecular volume
Molecular surface
Palanzabiity

Molar mass
Hydrogen bonding
Amphiiphulic moment

Best volumes 3
Hydrophilic regions

Hydrophobic integy mament

Capacity factor

Hydrophobee regions

Critical padaing

oganithm of partition coefficen

Duffusiviey

* Blank, ather ways of caloddation, Fordeatails, see reference Crucian: o al (20000

(2103, 128)
(2103, 68)

= df.drop('label', axis=1)
= X.fillna(0)
= df['label’]
print(X.shape)
CORRCUT = 0.95
corr matrix = X.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr matrix.shape), \
- k=l).astype(bool))
to drop = [column for column in upper.columns if any(upper[column] > CORRCUT)]
X = X.drop(X[to drop], axis=1)
print(X.shape)

X train, X test, y train, y test = train test split(X, y, \
I test size=0.2, random state=42)

accuracys =
numoftrees =

for numofest in fEEEéil 100, 10): >

rf = RandomForestClassifier(n estimators=numofest, random state=42)

rf.fit(X train, y train)

y pred = rf.predict(X test)

acc = accuracy score(y test, y pred)
accuracys.append(acc)

numoftrees.append(numofest)
#print(f"Accuracy for {numofest} trees:", accuracy)

import matplotlib.pyplot as plt

plt.plot(numoftrees, accuracys)
plt.xlabel('Number of Trees')

plt.ylabel('Accuracy')

plt.title('Accuracy vs Number of Trees')

plt.show()

print(“Max Accuracy:", max(accuracys))

bestnoftrees = numoftrees[accuracys.index(max(accuracys))]
print("Number of Trees:", bestnoftrees)

Random Forest Approach

Accuracy vs Number of Trees

1mport matplotlib.py
plt.plot(numoftrees,
plt.xlabel('Number o
plt.ylabel('Accuracy
plt.title('Accuracy)
plt.show()

print("“Max Accuracy:
bestnoftrees = numof;
print("Number of Tre«

Number of Trees

Max Accuracy: 0.8266033254156769
Number of Trees: 71

rf = RandomForestClassifier(n estimators=bestnoftrees, \
| | | | - random_state=42)
rf.fit(X train, y train)

print out the max detpth used in the trees
print("Max Depth:", rf.max depth)

y pred = rf.predict(X test)

print("Accuracy:", accuracy score(y test, y pred))
print("Confusion Matrix:")

print(confusion matrix(y test, y pred))
print("Precision:", precision score(y test, y pred))
print("Recall:", recall score(y test, y pred))

the same for the training set

y pred train = rf.predict(X train)

print("Accuracy on training set:", \

| accuracy score(y train, y pred train))
print("Confusion Matrix on training set:")
print(confusion matrix(y train, y pred train))
print("Precision on training set:", \

| precision score(y train, y pred train))
print("Recall on training set:", \

| recall score(v train. v pred train))

rf = RandomForestClassifier(n estimators=bestnoftrees, \

Gl EELCRER
print out
print ("Max
y pred = rf
print("Accu
print("Conf
print(confu
print("Prec
print("Reca
the same
y pred trai
print("Accu
accur
print("Conf
print(confu
print(“Prec
preci
print("Reca

= Y

Max Depth: None Tree growth: Each tree in
Accuracy: 0.8266033254156769 the forest will be allowed
Confusion Matrix: to grow until all leaves
[[43 58] are pure (all data points
[15 305]] in a leaf belong to the
Precision: 0.8402203856749312 | Same class) possible
Recall: 0.953125 QvEliiing
Accuracy on training set: 0.9994054696789536
Confusion Matrix on training set:
[357 1]
[0 1324]]

Precision on training set: 0.999245283018868
Recall on training set: 1.0

e

testaccuracy = []

trainaccuracy = []

for maxdepth in range(1, 10):

rf = RandomForestClassifier(n estimators=bestnoftrees, \

max depth=maxdepth, \
random_state=42)
rf.fit(X train, y train)
y pred = rf.predict(X test)
testaccuracy.append(accuracy score(y test, y pred))
y pred train = rf.predict(X train)
trainaccuracy.append(accuracy score(y train, y pred train))

plt.plot(range(1l, 10), testaccuracy, label='Test')
plt.plot(range(l, 10), trainaccuracy, label='Train')
plt.xlabel('Max Depth')

plt.ylabel|(|'Accuracy'))

plt.title('Accuracy vs Max Depth')

plt.legend()

plt.show()

bestdepth = testaccuracy.index(max(testaccuracy))+1
print ("Max Accuracy:", max(testaccuracy),\

| | "Max Depth:", bestdepth)

Randon Accuracy vs Max Depth

plt.plot
plt.plof
plt.xlal
plt.ylat
pLt. it}
plt. lege
P Lt.shoy Max Depth

bestdepf
print ('Max Accuracy: 0.836104513064133 Max Depth: 6

rf = RandomForestClassifier(n _estimators=bestnoftrees,
max_depth=bestdepth, \
random state=42)

rf.fit(X train, y train)

y pred = rf.predict(X test)

print("Accuracy:", accuracy score(y test, y pred))
print("Confusion Matrix:")

print(confusion matrix(y test, y pred))
print("Precision:", precision score(y test, y pred))
print("Recall:", recall score(y test, y pred))

the same for the training set

y pred train = rf.predict(X train)
print("Accuracy on training set:", \

| accuracy score(y train, y pred train))
print("Confusion Matrix on training set:")
print(confusion matrix(y train, y pred train))
print("Precision on training set:", \

‘ precision scorelv train v nred train))

print("Recall on trai (variable) y train: Any
~ recall score(y train, y pred train))

Accuracy: 0.836104513064133
f.fit(x 4 Confusion Matrix:
y_pred =1 [T 37 64]

print("Acc

print("Con [5 315]]
print(conf pracision: 0.8311345646437994

print("Pre

print("Re¢ Recall: 0.984375
" red ol Accuracy on training set: 0.9078478002378121

y pred tre
print("Acd Confusion Matrix on training set:

NI 204 154]

print("Cor

print(conf [1 132311
print("Pre

orec Precision on training set: 0.8957345971563981
print("Red Recall on training set: 0.9992447129909365

re

for-i-in range(3):
--tree-=-rf.estimators [i]
- dot_data = export_graphviz(tree,

- feature names=X train.columns,

--filled=True, - -

- max_depth=2,

--impurity=False, -
...........................proportion:True)

- -graph = graphviz.Source(dot data)

- ~display(graph)

Random Forest Approach

W8 <= 8.812
samples = 29.8%
value = [0.49, 0.51]

T

DD1 <= 103.438 %FU10 <= 0.0
samples = 21.7% samples = 8.1%
value = [0.403, 0.597] value =[0.77, 0.23]

/. \ [\

)

Gaussian Process Regression

Gaussian Process Regression (GPR), predictions are based on the

similarity between points. e e

- =5
,: = =
———= e —— =

=" NAI 3

‘Kernel Function: The core of GPR is the kernel function, which
defines the similarity or covariance between data points. This,
function determines how much information is shared hetween
points — points that are more similar according to the kernel will
have more influence on each other's predictions.

Gaussian Process Regression

Prediction Process: When making a prediction for a new point, GPR
considers the similarity between that new point and all the points in the
training data. Points that are more similar to the new point (according to
the kernel) will have a greater welght in determlnlng the prediction.
T -
Imagine you're trying to predlet the temperature at a new location. You
have temperature readings from several nearhy weather stations. In

GPR. the kernel function would he like a measure of how close the new
location is to each weather stations

import pandas as pd
import numpy as np

df = pd.read csv('data/surface.csv')

df = df.drop('dE', axis=1)
print(df.shape)
print(df.head()))

import pandas as pd

(40, 71)

import nump o\

df = pd.rea
df = df.dro
print(df.sh
print/(df.he

1
2
3
4
5

5.420000e-15
1.200000e-14
2.000000e-14

100
4.670000e-17
1.050000e-16
1.790000e-16
2.710000e-16
3.850000e-16

600

1.030000e-14
2.270000e-14
3.760000e-14

200
1.850000e-16
4.160000e-16
7.010000e-16
1.050000e-15
1.470000e-15

700

1.780000e-14
3.930000e-14
6.480000e-14

300
5.200000e-16
1.170000e-15
1.960000e-15
2.930000e-15
4.110000e-15

800

1.220000e
2.720000e
4.560000e
6.790000e
9.490000e

900

2.860000e-14
6.260000e-14
1.030000e-13

df[vAT!]
df.columns[1:]

[int(t) for t in T]
v = [int(v) for v in v]
print(v)
print(T) X, Yy = np.meshgrid(T, v)
print(x.shape)
print(y.shape)
z = np.array(df.iloc[:,1:])

print(z.shape)

di[SvAT"]
df.columns|[1:]

LS 250 3,0 4,005,806, 8750 8,0 9,810, 811, 12,0003 8 14, 815,516,017, 218,519
[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 13
(40, 70)
(40, 70)
(40, 70)

print(y.shape)
z = np.array(df.iloc[:,1:])
print(z.shape)

fig = plt.figure()

fig.set size inches(12, 12)

ax = fig.add subplot(11ll, projection='3d")
ax.scatter(x, y, z, color='b")

ax.set xlabel('T (K)')

ax.set ylabel('v (quantum number)"')
ax.set zlabel('k (cm™3/s)')
plt.show()

Gaussian Process Regression

Na(v) + H2(0) — Na(v — Aw)

+H5(0), Av=1,23.)

1g.s5el size 1ncnes(12

" ax = fig.add subplot(1
ax.scatter(x, y, z, ca
ax.set xlabel('T (K)")
ax.set ylabel('v (quan

ax.set zlabel('k (cm™3
plt.show()

(2800, 2) [160 1]
x.reshape(-1) (2800,) 4.67e-17

y.reshape(-1) (2520, 2) (280, 2} (2520,)" (280,)
np.column stack((t, v))

= z.reshape(-1)

print(X.shape, X[0])

print(Y.shape, Y[0])

X train, X test, Y train, Y test = train test split(\
X, Y, test size=0.1, random state=42)

print(X train.shape, X test.shape, Y train.shape, Y test.shape)
0.2s

kernel = 1.0 * Matern(length scale=1.0, nu=2.5)

gpr = GaussianProcessRegressor(kernel=kernel, n restarts optimizer=10,\
| normalize y=False, random_state=42)
gpr.fit(X train, Y train)

Y pred, Y std = gpr.predict(X test, return std=True)

rmse = np.sqrt(mean—saquared—error(Y test, Y pred))

r2 = r2 _score(Y _test, Y pred)

print("RMSE %6.2e, R2 %6.2f" % (rmse, r2))

plt.scatter(Y test, Y pred)

plt.xlabel('True values')

plt.ylabel('Predicted values')

plt.title('Gaussian Process Regression')

plt.show()

Gaussian Process Regression

RMSE 3.41e-11, R2 0.86

kernel = 1.0 *
gpr = Nk

| gpr.fit(X trair

Y pred, Y std =

rmse = np.sqrt(

r2 = r2 score()

print ("RMSE
)Lt.scatter(Y t
.Xlabel('Tru
t.ylabel('Pre
.title('Gaus
)yLt.show()

w
v
2
o
>
©
O
-
2
©
a

Gaussian Process Regression

05 10 15 20 25
Tue values

30

35
le-10

is optimizer=10,\
ym state=42)

print(np.min(Y_ test), np.max(Y test))
print(np.min(Y pred), np.max(Y pred))

v/ 0.0s

1.05e-16 3.35e-10
-8.452855806257396e-11 2.655611032996181e-10

Y trainL = np.loglO(Y train)

Ernet— aternfltength_scale=1.0, nu=2.5)
gpr = GaussianProcessRegressor(kernel=kernel, n restarts optimizer=10,\
| normalize y=False, random state=42)
gpr.fit(X train, Y trainlL)

Y predL = gpr.predict(X test)

Y pred = 10*%*Y predL

rmse = np.sqrt(mean——sguared—error(Y test, Y pred))
r2 = r2_score(Y test, Y pred)

print("RMSE %6.2e, R2 %6.2f" % (rmse, r2))
plt.scatter(Y_test, Y pred)

plt.xlabel('True values')

plt.ylabel('Predicted values')

plt.title('Gaussian Process Regression')
plt.show()

Gaussian Process Regression

o .o _ | RMSE 6.02e-13, R2 1.00

kernel = 1.0
gpr =

Gaussian Process Regression limizer=10,\

ite=42)
gpr-Fit(X tr
Y predL = gp
Y pred = 10%*
rmse = .SqQ
r2 = r2 scor
print("RMSE
.scatter(
.xlabel ("'
.ylabel ("'

.ti‘tle('G 00 05 10 15 20 25 30 35
Tue values le-10
.Show()

w
v
=
L]
>
=
O
-
2
©
@
|~
a

print(np.min(Y_test), np.max(Y_test))
print(np.min(Y pred), np.max(Y pred))

v/ 0.0s

1.05e-16 3.35e-10
1.0112154496134055e-16 3.348786030775483e-10

ML Introduction
Unsupervised techniques
Reinforcement Learning

Supervised Techniques : =
& LRand PLSand RFand GPR/TL.

o Deep Learning ~ ° i TWW
= NN m} H L
m CNN

o Interpretable ML

Working Examples

G

HT"""”

LG

wﬁru
|
/| \
—/)

Deep Learning

Deep learning techniques involve training artificial neural
networks with multiple layers (hence "deep”) to learn complex

Jatterns and representations from data-

- =

- = =

=
£ | I VAN By S - === |_LR=)
£

.......
“‘

- G\VM‘}\\?{{
X R XL
é‘g CLRN RN

eSO 00T
§EOCOQOQCOC
ogoorvocoe

(/ 7 A S A — ? ;Il;;mr
"ﬁs'gﬁasglzghﬂ\f Neowerk

ML Introduction

Unsupervised techniques

Reinforcement Learning

Supervised Techniques ¢ =

& LR and PLS and RFand PRAL =

o Deep Learning = T
m CNN

o Interpretable ML

Working Examples

TINIG —

1\]\

o mu‘.u‘ru
—/) \

Artificial Neural Network

There are three layers in

the network architecture: -
‘the input layer, the hidden
layer (more than one), and
the output layer. A typical
feedforward network 0
processes information in .
one direction, from input input Layer\\:{y 7 DilGae
to output. |

Feed-forward

Artificial Neural Network

Weighted Sum: The neuron receives input signals from other
neurons or from the innut layer. Each input signal is

'multipliedbya ~ , and these welghted inputs are
summed together. — f .e. F
UGS T
they are
updated
during the

training

Artificial Neural Network

Bias: A bias term is added to the weighted sum. This bias
allows the neuron to shift the actlvatlon function and

FTECHOLUG =

“learn more complex patternsM L ==

gt

Artificial Neural Network

Activation Function: The activation function is applied to the sum
of the weighted inputs and the bias. This function introduces
non- -linearity into the network enabling it to learn complex relationships

1 WV 1 L

In the data ;jg TECHOIUG ;\

gt

Artificial Neural Network

Output: The output of the activation function is the neuron's output,

which is then passed on to other neurons in the next layer.
- = i

=
=
7,7;:
£ M L
: —=E
- —=
— -
= =4

AN

] l‘ 11
A IAN

]
\

L]

= TECHOLUG

b IIT

Artificial Neural Network

The activation
function is important
for two reasons: first, Ak
it allows you to turn . (A

on your computer. it Maxout
contributes to the tanh(z max(wle + by, wlz + bo)
conversion of the)
/ ELU J
x z >0
{a-(c“” -1) z<0 - # 0

Activation Functlons

Leaky ReLU)
max(0.1z, z)

input into a more ReLU
usable final output. max(0, z)

Artificial Neural Network

How the weights change during training

h u,uAL‘; AMA.JML;M.L!

[nitialization: Imtlally, the weights are asmgned random values.

1 WV 1 L

i

\ ey
"

FTECH® UG Efﬁ—

AR |

Artificial Neural Network

Forward Pass: The input data is fed through the network, and the
activations of the neurons are calculated Iayer by layer. This
Jrocess produces an output R —

I VAN B =

- —§ TECHOLUG =

Artificial Neural Network

Loss Function: The difference hetween the predicted output and
the actual target value is calculated using al Ioss function. This
loss represents the error of the network.

1 WV 1 L "'75/,/ 4|

- —§ TECHOLUG géiif/‘

Artificial Neural Network

Backpropagation: The error is propagated hack through the
network, and the gradients of the loss with respect to each
weight are calculated. These gradients indicate the direction and
magnitude of the weight adjustments needed to reduce the error.

gt

Artificial Neural Network

Weight Update: An optimization algorithm (like gradient
descent) uses the gradients to update the weights. The weights
are adjusted in the direction that mmlm!zes the loss.

IV I =
:tg TECHOLUG g;

Artificial Neural Network

What happens in each epoch: ,
1. Data Shuffle = huu‘ﬂduu..ﬂhlmﬂ 7
2. Batching (Optlona)a NI ==
3. lteration f‘ =
a. Forward Pass mimm
b. Loss Calculation
¢. Backpropagation
d. Weight Update
4. Epoch Completion

‘ul H
)

I‘

TECHOLUE

u llll‘lll
*T I
W

‘ 1\

Artificial Neural Network

What hannens in each epoch

1.
2.

3.

4,

Datz}LShllf’fle . ““““The training data is typically
Baiciiiig \Ullt"l“a') | é [\shuffled at the beginning of each
Iteration . "epoch. This helps prevent the

a. Forward Pass
b. Loss Calculation
¢. Backpropagation
d. Weight Update
Epoch Completion

T network from learning the order of
the data and encourages better
generalizatio

Artificial Neural Network
What happens in each epoch

1. Data Shuffle +““““The training data is often divided

2. Batching (ﬂllt"’“a” “.into smaller batches. This is

3. [teration ~— = "especially useful for large datasets
a. Forward Pass ' yyighat misht not fit into memory all
b. Loss Calculation at once.

¢. Backpropagation
d. Weight Update
4. Epoch Completion

Artificial Neural Network

What happens in each epoch:

1. Data Shuffle R
2. Batghing lﬂptlonal) For each batch (or the whole

“ It;;;ltllon = 'id.‘i‘!@?t if not usmg batches)

a. rorward Pass f?fa--r ‘,m‘-{f
b. Loss CGalculation

¢. Backpropagation

d. Weight Update

4. Epoch Completion

Artificial Neural Network
What happens in each epoch:

1. Data Shuffle A
2. Batching (ﬂptmnal) N IThe input data is fed through the
3. lteration o network, and the activations of the
1. Forward Pass 7 7y fneurons are calculated layer by
h. Loss Calsulation layer, producing an output
¢. Backpropagation prediction.

d. Weight Update
4. Epoch Completion

Artificial Neural Network
What happens in each epoch:

1. Data Shuffle A
2. Batching (ﬂptlonal) N Ihe difference between the
3. lteration ﬂ recqo predicted output and the actual
a. Forward Pass \’«T'target value is calculated using a
b. Loss Calculation loss function.

¢. Backpispagation
d. Weight Update
4. Epoch Completion

Gaussian Process Regression
What happens in each epoch:

1. Data Shuffle B

2. Batching (ﬂptlonal) N L =

3. [teration ﬂ rECHON = =
a. Forward Pass -y ,the BITO iS propagated back
b. Loss Caleulation < """ "through the network, and the™
¢. Backpropagation gradients of the loss with respect
d. Weigii Upiate to the weights are calculated

4. Epoch Completion

Artificial Neural Network
What happens in each epoch:

1. Data Shuffle L TR nurE

2. Batching (ﬂptlonal) NML ==

3. |tel‘atIOIl é TECHQ! 1= —
a. ForwardPass m ,An optlmlzatlon algorithm uses
b. Loss Calculation the gradients to update the ©
¢. Backnronagation weights of the network

d. Weight Update
4. Epoch Gainipiction

Artificial Neural Network
What happens in each epoch:

1. Data Shuffle B

2. Batching (ﬂptlonal) N L =

3. lteration ﬂ e
2. Forward Pass = = .,Repeat steps are repeated for all
b. Loss Caleulation _ batches (or the whole dataset)
¢. Backpropagation until all the training data has been
d. Weight Update processed.

4. Epoch Completion

Artificial Neural Network
What happens in each epoch:

1. Data Shuffle Ll LR mlrE 7

2. Batching (Optlonal)% NML o

3. |tel‘atIOIl ;tg TECHQL! 1=
a. Forward Pass H ,Once aIIthe trammg data has
b. Loss Calculation _been processed, one epoch i is"
c. Backpropagation complete.

d. weight Upuate
4. Epoch Completion

k_ S 1“M/Mfffﬁ)
~— 1 Nl ;gg

TensorFIow /Keras

S

@H |

s

Artificial Neural Network

Tensorflow was previously the most widely used Deep Learning library,
however, it was tricky to figure with for newbies. A simple one-layer
_network involves a substantial amount of code. With Keras, however, the
entire process of creating a Neural Network’s structure, as well as training
and tracking it, becomes exceedingly straightforward. -

Keras is a high-level API built on top of TensorFlow (and other
backends like Theano and CNTK, though TensorFlow is the most
common and officially supported one now)

Artificial Neural Network

df = .read csv('data/surface.csv')
df = df.drop('dE', axis=1)
v = df['v\T']
T = df.columns[1:]
= ()" for t in T
W= (v) for v in v]
X, Yy = .meshgrid(T, v)
Z = ~array(dfileec|: 11
fig = .figure()

fig.set size inches(12, 12)
ax = fig.add subplot(11ll, projection='3d")
ax.scatter(x, y, z, color='b"')
ax.set xlabel('T (K)")
ax.set ylabel('v (quantum number)')
ax.set zlabel('k (cm™3/s)")
.show()

X.reshape(-1)
y.reshape(-1)
np.column_stack((t, v))

z.reshape(-1)

YL = np.loglO(Y)
X train, X test, Y train, Y test = train test split(\
X, YL, test_size=0.1, random_state=42)

model = Sequential()
model.add(InputLayer(input shape=(2,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1l, activation='linear'))
model.compile(loss='mean squared error', \

hist

optimizer=adam.Adam(learning rate=0.001), \
metrics=['mse'])

ory = model.fit(X train, Y train, epochs=20, \

.~ batch_size=64, verbose=1, validation split=0.1)

model.save('model.h5")

model = Sequential()
model.add(InputLayer(input shape=(2,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
add (Dense(1, activation='linear'))
ile(loss="mean squared error', \
optimizer=adam.Adam(learning rate=0.001), i::::::D

= model.fit(X train, Y train, epochs=20, \
~ batch_size=64, verbose=1, validation_split=0.1)
model.save('model.h5")

model = Sequential()

model.add(InputLayer(input shape=(2,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(64, activation='relu'))

model.add(Dense(32, activation='relu'))
model.add(Dense(1l, activation='linear'))
model.compile(loss='mean squared error', \
optimizer=adam.Adam(learning rate=0.001), \
metrics=['mse'])

ory =-model.fit(X train, Y_train, epochs=20, \
~ batch_size=64, verbose=1, validation split=0.1

model.save('model.h5™)

hist

from : : import plot model
plot model(model, to file='model plot.png',\

Artificial Neural Network ey o
) input: | [(None, 2)]

None 2
one, 52

100000000000000000

OO0

X

Mone, 52
ons, 60

o
)
0
‘@

o, 60
None, 32

0000000

0000000000

Mone, 52
Mone, 1)

o

Epoch

36/36 1s 5ms/step - loss: 42596.5156 - mse: 425
Epoch

36/36 0s 1lms/step - loss: 743.3082 - mse: 743.3
Epoch

36/36 0s 1ms/step - loss: 54.6704 - mse: 54.67C
Epoch

36/36 0s 1lms/step - loss: 38.0262 - mse:

Epoch

36/36 0s 2ms/step - loss: 37.2296 - mse:

Epoch

36/36 0s 3ms/step - loss: 36.8328 - mse:

Epoch

36/36 - 0s 2ms/step - loss: 36.6504 - mse: 36.650

Cna~h

hie

| | | batch size=64, verbose=1, validation split=0.1)
model.save('model.h5")

print("min- loss: ", min(history.history['loss']))
print("min-val loss: ", min(history.history['val loss']))
plt.plot(history.history['loss'])

plt.plot(history.history['val loss'])
plt.title('model loss')

plt.ylabel('loss"')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')
plt.show()

0.2s

Artificial

print(“min
print("min

0.2s

t.plot(h
t.plot(h
L title(
Lt.ylabel
C.xlabel
. Legend
Lt.show()

min loss: 30.04009246826172

min val loss:

- {rain
validation

26.83810043334961

model loss

from sklearn.metrics import mean—sgdared—error

Y pred = model.predict(X test)

rmse = np.sqrt(mean——sguared—error(Y test, Y pred))
print('rmse: ', rmse)

plt.scatter(Y test, Y pred)

plt.xlabel('True Values')
plt.ylabel('Predictions')

plt.show()

Artificial rmse: 5.150392745149612

red))

wv
c
o
®
2
©
W
-
a

-14 -13 -12
Tue Values

Artificial Neural Network

It's highly recommended and often crucial to normalize data when
using neural networks, although not always strictly mandatory

scalerx = M: xScaler()
- - e

sgalerx. fit(X)

Xs = scalerx.transform(X)
to be more L = np.logl0(Y)

. sealery = MinMax er()
correct It Wm_lld scaleme fit(YL.reshape(-1+%))

be better to fite YLs = scalery.transftform(YL.reshape(-1,1))

the scaler only

ontheljahﬂng X train, X test, Y train, Y test = train test split(\
set Xs, YLs, test size=0.1, random state=42)

model = Sequential()
model.add(InputLayer(input shape=(2,)))
model.add(Dense(32, activation='relu'))
model.add(Dense (64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1l, activation='linear'))
model.compile(loss='mean squared error', \

hist

optimizer=adam.Adam(learning rate=0.001), \
metrics=['mse'])

ory = model.fit(X train, Y train, epochs=20, \

I batch size=64, verbose=1, validation split=0.1)

model.save('model.h5")

4ms/step

Ims/step

Ims/step

2ms/step

2ms/step

bgtch_size;64, verbose=1, validation split=0.1)
save('model.h5")

print("min loss: ", min(history.history['loss']))
print("min val loss: ", min(history.history['val loss']))
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')
plt.show()

Artifici:

print ("
print ("
.plo
t.plo
bk
t.yla
t.xla
. leg
t.sho

min loss: 5.30519027961418e-05

min val loss:

w——Taln
validation

5.0720085710054263e-05

model loss

Y pred = model.predict(X test)
Y pred = scalery.inverse transform(Y pred)
Y test = scalery.inverse transform(Y test)

rmse = np.sqrt(mean—sguared—error(Y test, Y pred))

print('rmse: ', rmse)
plt.scatter(Y test, Y pred)
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.show()

Artifici rmse: 0.047275215445131295

Y pred
Y pred
Y test
rmse =
print (

t.scCq

toxl

o 'ylc -14 -13 -12

G Sh(Fue Values

w
c
o
=)
A
©
Q
—
a

ML Introduction

Unsupervised techniques

Reinforcement Learning

Supervised Techniques ¢ =

& LR and PLS and RFand PRAL =

o Deep Learning = T
m CNN

o Interpretable ML

Working Examples

TINIG —

1\]\

o mu‘.u‘ru
—/) \

Image Recognition

e Recognition of people,
animals, objects, places etc....
from digital images

e Trained using thousands of
pre-labelled images ¢

e Uses the pixels in each image
as descriptors

e [rained to recognise if the
image shows a certain class

. Hidden Layer . Output Layer

Convolutional Layers — extracting feature

WL - A nm
afs|s| o |v

Input Kernel

e Animage is a cuboid having .
its length, width (dimension of
» the image), and height (i.e the
channel 3 channels for RGB """ i
o Kernel slides across the height]]/" " g
and width of the image input”™ —
and dot product of the kernel 2] Jafsle]7]s]o]
and the image are computed

Convolutional Layers — extracting feature

Imagine this 3x3 Black an White i e image: and con3|der a 2x2 filter:

—— J
\¥E =7,/.

g S ML %
T

S
O = O
S

Convolutional Layers — extracting feature

Place the filter: We start by placmg the fllter in the top-left corner of the

image: o ;
s Wﬂ”ﬂli*&* o

1 0 1
1= 2 1 0
I |

Convolutional Layers — extracting feature

Element-wise multiplication: Multiply the correspondlng elements of the

filter and the image patch;s
- - 7= ML

o - TECHOLUG

i (=1 1) (1 % @)
(1 * @) (-1 *1)

=2 1 0
1= 0 1
1 0

Convolutional Layers — extracting feature

Summation: Add up the results of the multiplication:

e ———§ TECHOLUG % 4

=l Il@lﬂrl1+1\(l*@)

I | (=1) + (@) + (@) + (-1) = -2
I 1 1) 1 v = v (—1 2 l)

Convolutional Layers — extracting feature

Slide the filter: we move the filter and we apply the same operations so we got the
final result. After performing the convolution operation across the entire image,
Jyou'll get a smaller output matrix called a feature map In thls case, the feature map

" =g (IR VAN i 2

would be a 2x2 matrix:= = rtecrowue =

This particular filter is an example of an edge detection filter. It
highlights regions in the image where there's a change in intensity
-2 2 (from light to dark or dark to light). The negative values in the output
3 =D feature map correspond to edges where the intensity decreases from
left to right or top to bottom, while the positive values correspond to
edges where the intensity increases.

Convolutional Layers — extracting feature

Slide the filter: we move the filter and we apply the same operations so we got the
final result. After performlng the eenvelutlen eperatlon across the entire image,
you'll ge’ ; " feature map

would b
In a CNN, the activation function is applied to the stection filter It

output of each filter, to introduce non-linearity and ge in intensity

=7 shaping the feature representation. ues in the output
, y decreases from
VU 3 H 1§ £ -1 11] 1 R (1]

edges where the intensity i mereases

Convolutional Layers — extracting feature

During the training of a Convolutional Neural Network (CNN), the values within the
filters (also called kernels or weights) are what change and are learned. This is how
the network adapts and improves its ability to detect relevant features in the input
data. Similarly to the NN: 4 TECHOLUG E
- Initialization | m T MW‘, -
- Forward Pass
- Loss Calculation
Backpropagation
Weight Update.

Iteration:

Convolutional Layers — extracting feature

Convolutional layers often detect edges and
geometrles in the image (Colors: RGB three channels)

T LS L]

=

N

1 =CH

&

N

==

¥

-

Predicting Gene
Accessibility using CNNs

Kelley DR, Snoek J, Rinn JL.
Basset: learning the regulatory
code of the accessible genome
with deep convolutional neural
networks. Genome Research.
2016;26(7):990-999.
doi:10.1101/gr.200535.115.

(trainX, trainy), (testX, testy) = mnist.load data()
print('Train: X=%s, y=%s' % (trainX.shape, trainy.shape))
print(' Test: X=%s, y=%s' % (testX.shape, testy.sh