
Basics of Computer science
Prof. Loriano Storchi
loriano@storchi.org

https://www.storchi.org/

mailto:loriano@storchi.org

Contents
● Introduction to Informatics

○ What is a computer
○ Networks and TCP/IP
○ Digitalization and basics of data encryption

Informatics
We can use different definitions such as: computer science is the science of
representing and processing information, paraphrasing the study of algorithms
that describe and transform information.

INPUT
COMPUTER
ELABORATE OUTPUT

HARDWARE

Von Neumann machine (Zuse)

SYSTEM BUS, connection (Harvard architecture separation between data memory and program memory)

Von Neumann machine (Zuse)
The architecture described by Von Neumann (Zuse) is therefore composed of:

∙ The CPU is therefore a central processing unit
∙ A memory device that is used to store data which can then be identified by its

address.
∙ The various Input Output (I/O) devices that are used to interact with the

external user or other systems
∙ An interconnection line that links the various subsystems, the bus

Von Neumann machine (Zuse)

A computer constructed in this way is an extremely flexible machine. The
hardware provides basic functionality, while the software will then specialize the
machine to perform specific tasks.

Below we will present the various basic components of the calculator with a
“modern” perspective

CPU

CPU
CPU (Central Processing Unit) coordinates and manages all the various hardware
devices to acquire, interpret, and execute program instructions.

Today, it consists of a single chip and, like any other chip, communicates
with the outside world via pins . Using these pins, it receives signals and
sends electrical signals (information consisting of sequences of bits).

CPU - CU
The Control Unit (CU) is a core component of the CPU that directs the operation of the
processor.
● Think of it as the conductor of an orchestra. It doesn't play the instruments (the

ALU does the calculation), but it tells every other component when to play and
what to play.

● It manages the flow of data between the CPU, memory, and input/output devices.
● Without the CU, the powerful ALU and fast Registers would be silent and inactive.

CPU - ALU
ALU (Arithmetic Logic Unit) performs logical and arithmetic operations.
● Inputs: Operands (A and B) and an Opcode (Operation Code).
● Outputs: The Result (Y) and Status Flags.
● Role: It acts as the "calculator" of the CPU. Without it, the computer

cannot process data, only move it.
It is often represented by a "V" shape symbol in architectural diagrams.

CPU - ALU
Core Operations

CPU - Registers
● Registers , basically internal memory of the CPU that allows access to

data in a much faster way
● Registers: All CPUs always have at least two registers:

○ IP (Instruction Pointer or Program Counter PC) which contains
the pointer to the next instruction to be executed.

○ Flags Register . This register is essentially a series of bits that
represent a particular state of the CPU, for example the Overflow
flag is set to 1 in case the result of the operation just performed is
too large for the result field.

CPU - CLOCK
● CLOCK : marks the time intervals in which the CPU's internal devices operate. It

determines their speed expressed as the number of intervals per unit of
time .

● The state of the CPU changes every time a pulse is sent. So the execution
time of a given operation is measured in number of clock cycles.

● An important part of the CPU is the series of “circuits” that serve to propagate this
impulse between all the components of the CPU.

● No CPU can operate faster than the time it takes for the clock signal to travel the
longest path of this signal distribution “circuit,” the critical path .

MEMORY

Memory hierarchy
The memory hierarchy in current processors is composed of several levels, each one characterized
by data access speeds inversely proportional to their size: the larger these areas, the longer it takes
to retrieve the data contained within them.

Registers (The CPU's "Hands")

● Location: Inside the CPU itself.
● Speed: The absolute fastest (instant access).
● Capacity: Extremely small (only holds a few bits of data, like the specific

numbers currently being added).
● Role: These are not usually considered "memory" in the storage sense; they

are the actual working parts of the processor.

Cache
Cache: Generally, one to three levels of cache memory are installed. Cache memory has
different access times and sizes, depending on whether it is on-chip or off-chip, and on the
technology used to build the memory cells. (Cat /proc/cpuinfo to see cache size)
The use and benefit of a cache is based on the principle of locality, meaning
that a program tends to reuse recently used data and instructions. A
consequence is a rule of thumb that typically states that 90% of the total time is
spent executing 10% of the instructions. To be more precise, using a cache is
advantageous when a code exploits both spatial and temporal locality of the
data.

Cache
Temporal Locality
"If you used it recently, you'll likely use it again soon."
Impact: The cache keeps recently accessed data (variables,
instructions) ready for quick reuse.
 Example: A counter variable inside a for loop.
Spatial Locality
"If you used this address, you'll likely use its neighbors."
Impact: When fetching data, the cache pulls in the entire
"block" or "line" of surrounding memory.

Central Memory
● This is the memory that is directly interfaced with the CPU , for

example, it is directly connected to the computer's motherboard. This allows
for a continuous flow of data to and from the CPU.

● This type of memory is characterized by extremely fast data access speed.
● The main memory (also called Primary Storage) can be read-only like

ROM or read-write like RAM

Central Memory - RAM
● RAM (Random Access Memory) is divided into memory cells, and each

cell is assigned an address that is used to read and write the data it
contains.

● RAM also contains the instructions (opcodes) that will be executed and
the data on which these instructions will operate.

● Characteristics:
○ Volatile : The content is lost when the computer is turned off.
○ Fast : Approximately 100 clock cycles. Fast, therefore expensive.
○ Small size compared to mass memory, order of a few GiB

Central Memory - RAM
There are several RAM technologies, the most
commonly used one nowadays is DRAM (Dynamic
RAM)
In practice, each bit is stored in a capacitor (bit 1
or 0 depends on the charge of the capacitor).
Each capacitor must be periodically recharged,
otherwise there would be a loss of charge and
therefore of information. There are then several
technologically different variants of DRAM.

SRAM (Static RAM) is a memory technology that doesn't require continuous refresh, but can retain information
for very long periods of time. It offers low power consumption and short access times, but is expensive
to build. It's generally used for cache memory.

Central Memory - ROM
● ROM (Read Only Memory) read-only memory with a higher access speed than mass

storage
● Allows you to store data permanently . This type of memory is used to store data and

code necessary for the computer startup procedure and other programs/procedures (
Firmware).

● BIOS Basic Input/Output System , in modern systems replaced by UEFI Unified
Extensible Firmware Interface

● EPROM Erasable Programmable Read Only Memory , or erasable programmable
read-only memory. They can be erased and rewritten a generally limited number of times.

SHORT INTERMEZZO THE BOOT

BOOTUP process
● Power-on : Obviously the first stage of the process is the power-on, which is

usually initiated by the user.
○ wake on LAN " setting has been added , which makes it easy to power

on over the network, so no physical presence or action from the user is
required.

○ As soon as the CPU is powered it executes the code that is located in
the ROM (read-only memory) on the motherboard.

BOOTUP process
● POST : The system then runs a procedure called POST (Power-On Self

Test), which ensures that all the hardware is operational and ready for use.
This includes checking the memory and hard drives and... Once POST is
complete, the system looks for the first device in the boot order list.

● At this point, after loading the BIOS or UEFI, the system searches for an
active device in the boot device list. When it finds an available device, the
BIOS/UEFI provides information about basic communications with
peripherals and communications on the motherboard itself.

===================

Mass Storage – Secondary Storage
● Unlike main memory, it is not directly accessible from the CPU, but

the CPU communicates with a controller (I/O bus)
● Data is transferred from secondary memory to an area in main memory and

read from there directly by the CPU.
● Physically these devices are connected to the motherboard with a

high-speed cable or via cables connected to external interfaces.

They can be made with magnetic, optical or
solid-state technology

Mass storage
● Consisting of Hard Drives, CDs, DVDs, Solid State Drives, Tapes

○ Non-volatile , so data remains stored when the computer restarts
○ Slow compared to RAM (> 10000 cycles), obviously very variable

depending on the type of support
○ Averagely cheaper or at least cheaper than DRAM or SRAM
○ Large in size (now hundreds of GiB or a few TiB)
○ They can be either read-only or read-write (think of HARD-Disks

and DVD-ROMs)

Mass Storage – The Early Days
● Punched cards are the first secondary memory in the history of computers.

Data is stored on cardboard cards and recorded by punching holes, and then
read by the computer.

● Punched tapes similar to punched cards in type

Mass storage – Magnetic tape
● In this case the data is stored on a tape in magnetic form. These were

historically used in mainframes (large computers capable of performing very
fast processing and storing large amounts of data) in the 70s and 80s, but
are also used today for data backup.

Mass Storage – Hard Disk
● Composed of several magnetic plates placed one on top of the other and

rotating
● Data is stored on both sides of the individual platters and is organized into

tracks and sectors.
● The heads are used to read and write data.
● The rotation speed of the platters (rpm) is one of the determining factors

in the reading and writing speed.
● SSD solid state drives lower latencies less susceptible to failures and

mechanical shocks

Mass Storage – Removable

● It can be removed and separated from the computer
● CDs and DVDs , both read-only and read-write, data is stored and read

using a laser light (the basic idea is simple reflection or no reflection to
identify bits as 1 or 0)

● USB flash drive
● Foppy disks no longer used

USB

UNIT OF MEASUREMENT

Unit of measurement of information
● BIT = is the unit of measurement of information (from the English "binary

digit"), defined as the minimum quantity of information needed to
distinguish between two equally likely events . (Wikipedia)

● BYTE = 8 BITS (historically, characters were represented by 8 BITS, which is
why 1 Byte remains the minimum addressable memory unit to this
day)

● “KiloByte” better “kibibyte” KiB = 2 10 Byte = 1024 Byte
● “MegaByte” better “mebibyte” MiB = 1024 * 1024 Byte
● “GigaByte” better “gibibyte” GiB = 1024 * 1024 * 1024 Byte
● “TeraByte” better “tebibyte” TiB = 1024 * 1024 * 1024 * 1024 Byte

Computer performance
● Clearly, increasing the performance of a computer means decreasing the

time it takes to perform an operation.
● T clock is the clock period of the machine (frequency increase)
● CPI i is instead the number of clock "shots" needed to execute the given

instruction i (reduction of complexity for the single instruction)
● N i is finally the number of instructions of type i (for example sums, jumps,

etc.)

MIPS
MIPS is an abbreviation for Mega Instructions Per Second , and indicates
the number of general-purpose instructions a CPU executes in one second. It's
a more general-purpose unit of measurement used to measure the
performance of a computer than the FLOPS, which we'll see shortly.

MIPS = (Clock Frequency) / (10 6 CPI)

This type of measurement does not take into account, for example,
optimizations due to the presence of the cache and the percentages of the
different instructions within real programs, and not only.

FLOPS
FLOPS is an abbreviation for Floating Point Operations Per Second, and
indicates the number of floating-point operations a CPU performs in one second.
It is a unit of measurement used to measure a computer's performance,
particularly in scientific computing.
For example, in the case of a classic matrix product, 2*N 3 operations are
performed, so I can evaluate the FLOPS exactly by measuring the time needed to
perform this multiplication and obtain:

[flops] = 2*N 3 / time

SPEC

Standard Performance Evaluation Corporation is a non-profit organization
that produces and maintains a standardized set of computer benchmarks (i.e., a
set of test programs that are representative of real-world computer applications).
There are different sets of SPECs that are specific for example to different
intended uses of the computer

MODERN COMPUTERS

FLOPs

Finite State Machine
The Rigid Specialist
● An FSM is a computation model that can be

in exactly one of a finite number of states at
any given time.

● Logic: Transitions between states are
triggered by specific inputs (Conditions).

● Storage: Does not store a "program" in
memory. The logic is usually hardwired or
fixed in the circuit structure.

● Example: A vending machine. It waits for
coins (Input), transitions to "Credit"
(State), and dispenses a soda (Action).
It cannot "learn" to play chess.

Von Neumann Machine
The Flexible Generalist
● The Von Neumann architecture describes a

computer where program instructions and
data are held in the same memory storage.

● Stored Program: The machine can change its
behavior by loading a different software
program into memory.

● Cycle: It uses a Central Processing Unit
(CPU) to endlessly Fetch, Decode, and
Execute instructions.

● Flexibility: The same hardware can
calculate taxes, play video games, or
browse the web.

RFID

● RFID Radio-frequency identification cost a few cents and can reach a
few MIPS
○ Most standard RFID tags are Finite State Machines (FSM), not Von

Neumann machines. However, advanced "Smart" RFID tags (like those in
passports or credit cards) can be considered full computers that follow
the Von Neumann (or Harvard) architecture.

● They use electromagnetic fields to automatically identify and track objects
using an ID or other information.

● Passive if they use energy emitted by the RFID reader. Also
battery-powered.

● Active with battery they periodically send a signal

Embedded systems and SmartPhone Tablets
● Embedded systems that are very popular today are calculators designed

for watches, cars, household appliances, medical devices, and audio/video
players (Android Box). These calculators cost a few dozen euros and offer
performance in the order of a few hundred MIPS (often equipped with
a Linux OS).

● Smartphones and Tablets, on the other hand, are systems with
significantly higher computing power. Modern high-end smartphones
(like iPhone 15 Pro or Galaxy S24) have neural engines and GPUs
that perform in the Teraflops range, not just GFLOPS

Game Consoles, PCs and Workstations
● Game consoles are systems with overall performances that can reach around 10

to 12 TFLOPS (10,000 to 12,000 GFLOPS).also considering the GPUs
● PCs considering Desktops and Laptops cover a wide range of possibilities

starting from a few hundred euros up to a few thousand with performances that
therefore go from Hundreds to 80,000 GFLOPS considering the GPU

● There are Servers and Workstations that are designed for High Performance
Computing and centralization of service. For €20,000 today, you can expect
100+ TFLOPS for graphics/AI (Workstation), but perhaps only 10-20
TFLOPS for high-precision scientific simulation (Server).

HPC
● In order to increase the performance of the computing resource in general it

is necessary to couple together numerous computers interconnected with
high-performance networks (parallel computing)

● For example, workstation clusters
● Supercomputers As of 2024, the top supercomputers (like Frontier)

have broken the Exaflop barrier (1000 PFLOPS)
● Obviously, production costs and maintenance costs increase in the same way

(even just in terms of absorbed power).

MODERN CPUs

CISC vs RISC
The speed of execution of a single instruction is one of the determining factors of the
CPU's performance. Two different perspectives:
● CISC (Complex Instruction Set) in this case the basic idea is that the basic

instruction set of a CPU must be as rich as possible, even if each single
instruction actually requires more clock cycles to be executed.

● RISC (Reduced Instruction Set) in this case each instruction is executed in
a single clock cycle . Obviously, more RISC instructions will be needed to execute
the same single instruction as a CISC.

● CISC architecture was the predominant one on the market in the 1970s and 1980s.
Today there is a trend in favor of the RISC type CPU.

Improve Performance
Increasing the performance of a CPU is always a compromise between costs and
consumption, for example some basic strategies can be adopted:

● Reduce the number of cycles required to execute a single instruction (trivial
example of multiplication)

● Increase the frequency (clock) with obvious physical limits (for example the
speed of light)

● Parallelism, for example, performing multiple operations in parallel (at
the same time)
○ At the instruction level, multiple instructions are executed in parallel by

the same CPU, for example using pipelines or superscalar processors.
○ Core-level parallelism, meaning more cores per CPU

Improve Performance – Increase Clock Frequency
Until 2000, the increase in CPU performance largely coincided with the increase
in clock frequency. We have reached about 4 GHz. We have reached the
physical limits (1 GHz and therefore in one ns the distance that an
electrical impulse can travel, imagining it travels at the speed of light
in a vacuum, is approximately 33 cm).

● High frequencies create noise and increase the heat to be dissipated
● Delays in signal propagation,
● Bus skew signals traveling on different lines travel at different speeds

Improve Performance – Increase Clock Frequency and
Miniaturization
The Speed of Light Limit (Signal Delay): This is the most fundamental reason. Electricity
travels very fast, but it is not instantaneous. Inside copper or gold wires, signals travel at
roughly 15 to 20 centimeters per nanosecond (slower than light in a vacuum).
● The Scenario: Imagine a CPU running at 4 GHz.

○ The Timing: It has a cycle time of 0.25 nanoseconds.
○ The Distance: In 0.25 nanoseconds, a signal can physically travel only about 4 to 5

centimeters.
○ If a CPU were large (e.g., the size of a dinner plate), the clock cycle would end before

the electrical signal could even travel from one side of the chip to the other. The data
wouldn't arrive in time for the next calculation.

To increase frequency (reduce the time), you must reduce the distance. You have to pack the
components closer together so the signal arrives instantly.

Improve Performance – Increase Clock Frequency and
Miniaturization
The "Bucket" Problem transistor acts like a tiny capacitor—think of it as a
bucket of water.
● To switch a transistor from "0" to "1" (Off to On), you have to fill that bucket with

electrons.
● To switch back to "0", you have to empty it.
● The problem: Large Transistors = Large Buckets. It takes longer to fill them up. If

you try to switch them too fast (high frequency), they never get fully full or fully
empty, and the data becomes corrupted.

● Small Transistors = Small Buckets. You can fill and empty a thimble much faster
than a bathtub.

Miniaturization makes the "gate capacitance" smaller, allowing the transistor to switch
states billions of times per second without lagging.

Improve Performance – Increase Clock Frequency and
Miniaturization
Power and Heat (Power Density)
The formula for the power consumed by a CPU is roughly:

P = C * V2 * f
(Power = Capacitance × Voltage squared × Frequency)

If you increase the Frequency (f), the Power (P) shoots up, generating massive heat.
To stop the CPU from melting, you must lower the other variables.
● Miniaturization reduces Capacitance (C).
● Miniaturization allows you to lower the Voltage (V).

By making things smaller, you require less energy to move the electrons, which compensates
for the heat generated by the increased speed.

Improving Performance – Pipeline
Each single instruction is divided into multiple stages (or phases) and
each phase is handled by a dedicated piece of CPU (hardware):

Clearly, the operations must be independent .
In this case, after an initial time (latency) to
load the pipeline, there will be n operations
executed in parallel. Multiple pipelines can also be
used, and therefore multiple instructions are read
at a time and executed.

Improving Performance – Superscalars
Different instructions process their operands simultaneously on different
hardware units, in practice there are several functional units of the same
type, for example there are several ALUs

Multiple Execution Units: Unlike a
scalar processor, which has a single
pipeline and can (at best) complete
one instruction per cycle, a
superscalar processor has multiple
execution units (e.g., two integer ALUs,
two Floating Point Units, and a
Load/Store unit).

Improving Performance – Jump Prediction
Pipelining works particularly well with sequential instructions, but one of the
basic constructs of programming is branching instructions, such as
IF...THEN...ELSE decisions :

If (a == b)
 printf("the two numbers are equal");
else
 printf("They are different \n");

Improving Performance – Jump Prediction
Modern CPUs can (pre-fetch) try to guess whether the program will
jump :

● Static prediction : we use criteria that make “common sense” assumptions,
for example we assume that all jumps are executed

● Dynamic : in practice the CPU maintains a table that is based on execution
statistics

Improving Performance – Out-of-order and Speculative
Executions
CPU design is significantly simpler if all instructions are executed sequentially,
but as we've seen, we can't make this assumption upfront. There are
dependencies. For example, executing a given instruction requires that the result
of the previous instruction be known.

● Out-of-order execution : Modern CPUs can temporarily skip some
instructions to increase performance, putting them on hold to follow
other instructions that do not introduce dependencies.

● Speculative execution : running particularly heavy parts of the code before
being sure they are actually needed.

CPU - Final Thoughts
Modern CPUs:
● Multi-core : in practice, there are multiple independent processors in the

same chip, each with its own cache memory, for example,
interconnected with each other . This allows for increased "theoretical"
performance without increasing the frequency (even Hyper-threading).

● GPUs (graphics processors) are increasingly used today to accelerate
computing.

CPU - Final Thoughts
Embedded systems, IoT, and Mobile CPUs (including Raspberry Pi):
● ARM refers to a prominent family of RISC (32-bit and 64-bit) processor architectures developed

by Arm Holdings (a British company). Uniquely, Arm does not manufacture chips directly;
instead, it designs the architecture and licenses it to other companies. These are then produced
as System-on-Chips (SoC) by manufacturers such as Apple, Qualcomm, Samsung, NVIDIA,
STMicroelectronics, and Broadcom (used in Raspberry Pi).

● These RISC CPUs are designed to optimize the balance between high performance and energy
efficiency. While originally dominant in mobile and embedded devices, the architecture has now
scaled up to power laptops and supercomputers.
○ Comparison: A modern efficient ARM core (e.g., a Cortex-A55 or similar found in

smartphones and IoT devices) typically consumes between 100 mW to 500 mW under
normal load. In contrast, a high-performance desktop x86 CPU (like a modern Intel Core i9
or AMD Ryzen 9) can consume over 200 W at peak performance.

Why RISC Consumes Less Power Than CISC
The Decoding Penalty (The Main Culprit). This is the single biggest factor.
● CISC (e.g., Intel x86): Instructions are like complex sentences. They have variable lengths

(some are 1 byte long, others are 15 bytes long) and can perform many tasks at once (e.g., "Go to
memory, get a number, add it to this register, and save it back").
○ The Cost: The CPU needs a massive, power-hungry circuit called a Decoder just to

figure out where one instruction ends and the next begins. It takes significant
electrical energy to "translate" these complex instructions into signals the chip can
understand.

● RISC (e.g., ARM): Instructions are like simple commands. They have a fixed length (usually 32
bits).
○ The Advantage: The hardware knows exactly how big every instruction is. The decoder

is tiny, simple, and essentially "hardwired." It uses very little power because it doesn't have to
perform complex analysis on the code stream.

Why RISC Consumes Less Power Than CISC
Today, the line is somewhat blurred.
● Modern CISC processors (like Intel Core i9) actually cheat: they use

a hardware translator to turn CISC instructions into RISC-like
"micro-operations" internally. However, that translation step itself
still burns power constantly.

● Modern RISC processors (like Apple M3 or Snapdragon) are
becoming more complex to get faster, but they still benefit from the
fundamental efficiency of their instruction set, which allows them
to run cooler and use less battery than their CISC counterparts.

TOP500 AND MOORE'S LAW

Moore's Law

Moore's first law initially stated
that microcircuit complexity (e.g.,
transistors per chip) doubles every
18 months. Though accurate for
decades, the doubling period has
slowed (now 2.5–3 years). Current
performance gains prioritize
specialized architectures (like AI
accelerators), 3D stacking (chiplets),
and efficient design over solely
transistor scaling.

Moore's Law

Is it still true today? In the 2020s, Moore's Law is slowing down or, according to some (like
Nvidia's CEO), is "dead."

● Physical Limits: We are approaching the size of atoms. Transistors are now measured
in nanometers (e.g., 3nm, 2nm). At this scale, quantum tunneling and heat dissipation
become massive problems.

● Economic Limits (Moore's Second Law): While we can still pack more transistors, the
cost to build the factories (fabs) to do so is doubling. A modern fab costs over $20
billion, making it harder to keep the "cheaper and faster" promise of the original law.

TOP500
● Difference between sustained performance and peak performance

● To objectively evaluate the performance of a computer you need a reference
test, a standard benchmark, for example Linpack

● TOP500 http://www.top500.org/ , ranking of the 500 most powerful
computers in the world

http://www.top500.org/

Top 500 list November 2025

Top500 list historical chart
An estimate of the computing power of
the human mind is a few dozen
petaflops or more.

That estimate (a few dozen petaflops) is
considered correct but conservative
based on older theoretical models, though
many modern neuroscientists and
computer engineers now believe the
number is significantly higher—likely in
the Exaflop (1,000 Petaflops) range.

Top500 list historical chart
In real
applications
the gap is
much worst

Top500 list historical chart
Where does the "Petaflop" estimate come from?

The estimate of 1015 to 1016 operations per second (1–50 Petaflops) was
popularized by futurists like Hans Moravec and Ray Kurzweil in the late 1990s
and early 2000s.

● They estimated the brain has roughly 1014 synapses (connections). If each
synapse processes roughly 10 signals per second, you get 1015 operations (1
Petaflop).

● If the brain works simply (like a binary switch), "a few dozen petaflops" is
correct.

Top500 list historical chart
The Modern View: The "Exaflop" Estimate

Recent research suggests the brain is much more complex. A synapse isn't just
a simple on/off switch; it is a complex molecular machine that processes
information non-linearly.
● If you need to simulate the chemical interactions within the synapses and

dendrites to replicate the brain's function, the computational requirement
jumps to 1 Exaflop (1018) or even 1 Zettaflop (1021).

● By this standard, the "few dozen petaflops" estimate is too low by a factor
of 100 to 1,000.

Top500 list historical chart

ALWAYS ABOUT ARCHITECTURE

FPGA

● Field Programmable Gate Array is an integrated circuit whose functions
are programmable via software. FPGAs (Field Programmable Gate Arrays) are
semiconductor devices based on an array of configurable logic blocks (CLBs)
connected via programmable interconnects.

● FPGAs can be reprogrammed based on the desired application or
functionality requirements after manufacturing. This feature distinguishes
FPGAs from application-specific integrated circuits (ASICs), which are
custom-built for specific design tasks. While one-time programmable (OTP)
FPGAs are available, the dominant types are SRAM-based, which can be
reprogrammed as the design evolves.

● ASIC (Application Specific Integrated Circuit)

Contents
● Introduction to Informatics

○ What is a computer
○ Networks and TCP/IP
○ Digitalization and basics of data encryption

UNITS OF MEASUREMENT AND PERFORMANCE

Performance
Bandwidth is the maximum amount of data (number of bits) that can be
transmitted in a channel. It is often used as an approximation of actual
throughput (unit of measurement e.g. Mbps).

Throughput (Performance) amount of data (number of bits) transmitted on
the channel in a certain period of time (unit of measurement e.g. Mbps)

Performance
● Latency or delay is the time taken by a message to go from one point to

another (unit of measurement is time, for example ms = millisecond
= (1/1000) s).
○ Transmission times are due to the simple speed of propagation of

the signal in the transmission medium , and therefore to the
distance

○ Times required to process, for example, the header of
transmitted packets

● Round Trip Time (RTT) is the time it takes for a message to go from point
A to point B and back again from B to A (ping and traceroute).

Performance

Performance

Performance

Performance

Unit of measurement
● Data transmission speed = amount of information / transfer time
● In general, this speed is expressed in bits per second, i.e., bit/s (or bps ,

also called bit rate). The byte per second , byte/s (or Bps), is also
used .

● Then we use the standard prefixes k (=kilo 10 3), M (=mega 10 6), G
(=giga 10 9) , therefore not the approximations based on powers of two that
are used in computer science.

● Converting from bps to Bps is simple, just divide by 8. For example,
ADSL 10 Mbps = 10 Mbps/8 = 1250 KBps

● 10 MiB file with a 5 Mbps line , it will take approximately (10 * 1024 *
1024 * 8) / 5 10 6 = 16.8 s (ignoring latency) .

COMPUTER NETWORKS

Computer Networks
A set of connected
autonomous computers, the
network is seen as
providing logical
channels through which
various applications can
communicate with each
other.

Computer Networks
● A set of connected autonomous computers

○ Nodes (hosts) can be either servers or desktop PCs, or mobile devices
or other

○ Connections are the channels that allow nodes to communicate.
Obviously, they can be transmitted using very different means,
such as twisted pair telephone wire, optical fiber, or radio
channels (wireless).
■ I can have direct or indirect connections (switches)

Switch
A network switch (also called a switching hub or bridging hub) is a network
device that connects computer devices together using packet switching to
receive, process , and forward data to the destination device.

Computer Networks
I can characterize networks based on their extension
● LAN (Local Area Network) : local area network, these are networks that

extend to the level of a single room or at most a building
● MAN (Metropolitan Area Network) : can, for example, connect multiple

LANs
● WAN (Wide Area Network) : Networks extending across geographical

areas. They connect LANs and MANs (the Internet is the WAN par excellence).

INTERNET

Internet
We can describe the internet first of all
from the point of view of the basic
components .
The Internet interconnects millions of
devices around the world, including
traditional desktop PCs, mobile devices,
and servers (which store and transmit
data, such as HTML pages, emails, etc.).
These devices are called hosts or end
systems .

Internet
● The various hosts are interconnected via communication channels. These

channels can be of very different nature, such as coaxial cables, copper
wires, optical fibers, or radio links.

● Generally, hosts are not directly interconnected, but there are
"switching" devices called routers . Routers are used to route data
traffic , and therefore take information arriving from one channel and send
it to another channel.

● The Internet is a set of interconnected networks. The various hosts, as
well as other infrastructure devices, communicate with each other
using common protocols (the two main protocols are IP Internet Protocol
and TCP Transmission Control Protocol).

Internet
● The Internet today interconnects thousands of subnets

Host : computer connected to the
Internet, it can be either a client or a
server at the application level

Router : node used to route traffic (a
Layer 3 network gateway device ,)

Subnet : A set of hosts between which
there is a layer 2 connection (for example,
a LAN)

To date, order of billions of Hosts

Internet: A Brief History
● In 1969, the design of the ARPANET military network began . Among

other things, this network was designed to withstand nuclear attacks. In fact,
it was capable of connecting interconnected devices, following different paths
in the event of a failure.

● 1972 saw the birth of electronic mail (e-mail), file transfer via FTP,
and remote login.

● 1974 The IP and TCP protocols were officially introduced .
● 1979, the birth date of the CSNet network that interconnects universities

and research centers in the United States

Internet: A Brief History
● 1982 ARPANET and CSNet are connected, this is considered the official

birth date of the Internet in some ways
● 1990: NSFNet, a network connecting supercomputers, replaces the

Arpanet. This paves the way for civilian and commercial uses of the Internet.
● 1990 Same year Tim Bernes-Lee who then worked at CERN in Geneva

invented HTML (Hyper Text Markup Language) which allows the
management of information of different nature, text, images etc. This is the
first step towards the WWW (World Wide Web)

Internet: A Brief History
● 1993 Mosaic, the first browser, was created
● In 1994, Yahoo!, the first search engine, was born. In the second half of the

1990s, many others were created, leading to the birth of Google in 1998 .
The Internet today contains approximately 10 billion
computers, each computer (device) containing on
average a couple of billion transistors. Therefore, the
Internet interconnects 1019 ; in conclusion, there are
10,000 times more transistors than synapses in the
human brain.

Today, the Internet is used for selling goods and services. Audio
and video transmission, online collaboration, work, online gaming,
and social interaction.

INTERNET

Communication protocol
● A set of rules (formally described) that define the methods of communication

between two or more entities.

Network Model: Client-Server
● Most of the telematic services offered by the Internet are based on the

client/server interaction mode (different from P2P) .
● The client is equipped with special client software capable of sending service

requests to a specific server. The client formats the requests in a way that is
appropriate and understandable to the server, using a specific protocol (e.g., a web
browser or server).

Network model: P2P Peer-to-Peer
● In this case there is no distinction between client and server, each node can

instead act as either client or server depending on whether the single node is
requesting or providing data.

● To become part of the P2P network after joining the node must start providing
services and will be able to request services from other nodes (e.g. BitTorrent)

TCP/IP

TCP/IP: Basic Operation
● A protocol is a set of rules that the sender (sender) and the recipient (recipient) must follow.
● A trivial example of a (non-formal) "protocol" that two people follow when they meet and one

asks the time:
− Bob says goodbye to Alice
− Alice says goodbye to Bob
− Bob asks the time
− Alice tells the time
− Bob thanks and says goodbye
− Alice says hello

TCP/IP: Basic Operation

And finally a receipt (ACK)

TCP/IP Architecture

TCP/IP: Basic Operation
● The idea of layering . For example, the HTTP protocol is built on top of TCP . A

browser doesn't have to worry about how TCP is implemented, it just needs to know
that it works.

● The data that the transport layer receives from the application layer is
fragmented into packets. The data packets are reassembled at their destination (
each packet can follow different paths).

● TCP adds additional information to each packet , such as the sequence
number of which the packet is part.

● The packet is then passed to the network layer where IP routes the packets to
the destination host in the most appropriate way.

TCP/IP

TCP/IP

The TCP/IP STACK: Application Layer

● Application layer : we find numerous protocols such as HTTP, FTP, DNS, SMTP, etc.
etc. At this level two applications exchange messages without worrying about how
these will be delivered.

● This is the interface with the user, for example if we consult a web page the protocol
manages the interaction session between our browser (client) and the web server.

TCP/IP

The TCP/IP STACK: Transport Layer
● Transport Layer : At this level we find the two basic protocols TCP and UDP, at

this level two hosts exchange segments.
● The protocols at this level offer the transport service to the application layer. For

example, to manage multiple sessions active at the same time, TCP and UDP
use different port numbers (logical ports).

● TCP
○ For each window of packets sent, TCP starts a time counter
○ The recipient sends an ACK if it has received the packet.
○ If the sender does not receive an ACK before the time expires (or…). The

sender, for example, takes care of resend- ing the data

The TCP/IP STACK: Transport Layer

TCP/IP

The TCP/IP STACK: Network Layer
● Network Layer : At this layer, we find the IP protocol. This protocol

handles the addressing and routing of packets between sender
and recipient.

● Addressing: Each node is unambiguously identified by an IP address.
● Routing: This feature allows you to select the best path to follow to get

the data from the sender to the recipient.

TCP/IP

The TCP/IP STACK: Network Access Layer
● The TCP/IP model only specifies that below the IP layer there must be a network

access layer that actually takes care of sending packets.
● At the link layer, protocols decide how the message should be transferred for each

stage of the path. For example, how to get from the first host to the first router and
so on (MAC and Ethernet addresses).

● At the physical level, the data is then converted into electrical or electromagnetic
signals or...

TCP/IP

The TCP/IP STACK
● When an application needs to send data, it is passed down the layer, one at a time,

until it reaches the underlying physical network. Along the way, each layer adds
information to the data, creating a "network frame" (encapsulation):

TCP/IP: headers
The TCP Header (The Logistics):
This is the inner layer. It
manages the specific
conversation between
applications. It uses Port
Numbers to ensure the data goes
to the correct program (like
Chrome vs. Spotify) and
Sequence Numbers to put the
packets back in the correct
order if they arrive scrambled.

TCP/IP: headers
The IP Header (The
Address): This is the outer
layer. It handles the routing
across the network. It
contains the Source and
Destination IP Addresses to
ensure the packet finds the
correct physical machine in
the vastness of the internet.

IP ADDRESSES, DNS, DHCP AND ...

IP addresses
● Each computer connected to the Internet is identified by its IP address , which

is made up of four groups of one byte each (32 bits in total). Each number can take
values from 0 to 255.

● For example: 192.167.12.66 (static or dynamic IPs, private IPs, etc.)
● The last number usually identifies a host, the previous numbers the subnet to which this

host belongs.
● The maximum number of IPv4 addresses is therefore 256*256*256*256
● IPv6 : 128-bit and therefore 2,128 approximately 3.4 x 10,38 addresses (IoT: Internet of

things)

IP addresses

IP Addresses: Gateway
● The default gateway is used to route packets to other destinations
● DHCP is almost always used to automatically provide the client with the

default gateway IP address.

IP addresses: firewall
● The firewall is a network security system that controls all incoming and

outgoing traffic according to well-defined rules.

IP Addresses: DMZ
● A DMZ (demilitarized zone) is a physical or logical subnetwork that contains

and exposes an external organization's services to an unprotected network,
usually a larger network such as the Internet.

DNS
● It's difficult for humans to memorize numbers, much easier to memorize

names. That's why there are DNS (Domain Name System) services. These
are systems that are useful for translating names and addresses back and
forth.

DNS
● Each host is therefore identified by the user by a symbolic name:

− gw-thch.unich.it
● Names are assigned uniquely and managed administratively in a hierarchical manner.
● Names uniquely identify a host within a domain:

− it is the domain
− unich is the subdomain within ad it

● The main domains are:
− .gov .edu .com essentially in the USA associated with the type of organization
− The various countries instead have domains of the type: .it, .uk, .fr, .de ….

DNS
● Before the introduction of the DNS system, the correspondence between IP

addresses and names was managed by the SRI-NIC which essentially
maintained a list in a hosts.txt file.

● In practice, DNS is a distributed database . The information is distributed
across many computers, DNS servers, each of which is responsible for a
certain portion of the name, called the domain .

DNS
● Servers are organized in a hierarchical tree structure
● When requesting a given address, for example www.storchi.org , the DNS

server of “your network” checks whether the address corresponding to the
name is present in the cache .

● If it is not present, contact the Root servers, which provide the
address for the TLD servers (like .org or .it).

● This last server will return the IP address corresponding to
“WWW” (Domain Name System (DNS) names are "case
insensitive")

http://www.storchi.org/

DHCP
● For example the ADSL router you have at home

High-level protocols
● Different types of protocols are used, each for a specific service:

− HTTP (HyperText Transfer Protocol) Access to hypertext pages (WEB)
within the WWW (encrypted https)

− FTP (File Transfer Protocol) transfer and copy files
− SMTP (Simple Mail Transfer Protocol) Sending email messages POP3

for downloading email messages to your computer IMAP is useful when
checking messages from multiple devices

A resource on the network is therefore “identified” by the URL:
http://hostname.it/index.html

SMTP example

SOFTWARE

Software

● Basic software : dedicated to the management of the computer itself, for
example the Operating System

● Application software : dedicated to the creation of specific applications,
such as internet browsing, word processing, or other.

OPERATING SYSTEMS

Operating System
● It is low-level software that helps

the user and high-level applications
interact with the hardware and the data
that the programs store on the computer.

● An OS performs basic operations ,
such as recognizing input from the
keyboard, sending output to the display,
keeping track of directories and files on
disk, and controlling peripherals such as
printers.

Operating System
● Running programs : OSs provide an environment where the user can run

application programs without having to worry about memory allocation or CPU
scheduling.

● I/O Operations : Every application requires some input and produces some output.
The OS hides the details needed to handle these types of operations from the
underlying hardware.

● Communication : There are situations where two applications need to
communicate with each other, whether they are on the same computer
(different processes) or on different computers . The OS is responsible for
managing this type of inter-process communication.

Operating Systems
They make it easier to write application programs that do not have to worry
about specific hardware characteristics.

Applications

OS

HW

Operating Systems
Layered view of hardware and software components, e.g. provides the
programmer with an easy-to-use API , hides hardware details

OPERATING SYSTEMS HISTORY AND KEY
FEATURES

Operating System: History
● Babbage (1792-1871) Tries to build an analytical and programmable mechanical

machine without an operating system
− The first female programmer in history, Lady Ada Lovelace (daughter of

Byron)
● Valve machines (1944-1955), are designed, built and programmed by a single

group of people
− Programmed in machine language , used for numerical calculation only
− There is no OS , there is no distinction between designer, programmer and user
− The single user writes the program , loads it, loads the data, waits for the

output and then moves on to execute the next program.
− No one imagines that computers will ever go beyond research

laboratories.

Operating System: History
● Transistors (1955-1965) can build more reliable and cheaper machines

− They are starting to be used for tasks other than basic numerical calculation
− The person who builds the machine is different from the person who

programs it and therefore uses it (user == programmer)
− first "high level" languages such as Assembly and FORTRAN are

introduced and punched cards are used.
− First examples of OS, called Resident Monitors :

● Control over the machine is given to the monitor
● The check is passed to the job that is followed
● Once the job is finished, control returns to the monitor

Operating System: History
● To avoid downtime between the execution of one job and another, tapes for

storing jobs are introduced.

Operating System: History
● Integrated circuits (1965 – 1980) the figure of the operator as an interface

towards the computer disappears :
− Programming is done primarily using high-level languages such as C
− Here come the text editors and terminals that allow you to operate
− Operating systems with modern features appear:

● Interactive
● Multi-programming
● Time sharing

Operating System: Multiprogramming
● Use the processor while other jobs are doing I/O
● So there are multiple jobs in memory at the same time.
● The scheduler (OS component) manages the CPU usage , while one job does I/O

the other uses the CPU, thus eliminating dead times (CPU idle)
● So the I/O routines must be provided by the OS
● The operating system must take care of allocating memory for multiple jobs
● Likewise the OS must be able to allocate I/O resources between different

processes.

Operating System: Time-sharing
● It is essentially the extension of the concept of multiprogramming.
● The CPU's execution time is divided into intervals (quanta). When a quantum

expires, the current job's execution is interrupted, even if it doesn't need to perform
I/O, and another process (job) is switched. Processes generally belong to different
users.

● The context-switch is very fast and transparent to the user who has the
impression that many programs are being executed in parallel.

● The presence of multiple users makes it necessary to include memory and file
system protection mechanisms.

● A job is loaded from disk to memory, and vice versa (swapping)

Operating System: History

● CTSS (Compatible Time-Sharing System) 1965 : The concept of
multi-programming and the concept of time-sharing are introduced

● Multics 1965 : introduces the concept of process
● Unix 1970 : derivative of Multics and CTSS initially developed at Bell

Labs. Initially developed on two specific architectures, then developed in
C (initially all in assembly).

Operating Systems: History

IN BRIEF: THE FUNDAMENTAL COMPONENTS OF
AN OPERATING SYSTEM

Operating System: Process Management

● A process is basically a running program, which therefore uses
resources

● The OS must be able to:
− Create and terminate the processes themselves
− Manage communication between the processes themselves
− Suspend and resume processes

Operating System: Main Memory Management

● Main memory is essentially an array of individually addressable bytes, which
can be shared between the CPU and I/O devices.

● The OS must be able to:
− For example, keep track of which memory areas are used and by

whom (by which process)
− For example, decide which processes to allocate a given memory

area to when it is free.
− Ultimately allocate to free up memory space

Operating System: Secondary Memory
Management

● Computers we know are equipped with a secondary, non-volatile memory
of large size (larger than the main memory which is volatile).

● The OS must be able to handle the following activities:
− Allocate the required space and free it when no longer used
− Manage device access scheduling (e.g. hard disks, CDs/DVDs, or USB

sticks)

Operating System: Filesystem Management

● A file (archive) is the computer abstraction of the concept of an information
container, regardless of the device on which it is stored.

● A filesystem is composed by many files (a directory contains references to
other files). The OS must be able to handle the following tasks:
− Create and delete files and directories, manipulate them
− Encrypt the filesystem on secondary storage
− Examples, ext3, ext4, NTFS, FAT32 ...

Operating System: Filesystem Management

● The filesystem : must manage the allocation of disk space, for example
maintaining an index of where the data relating to a given file is stored.
Maintaining the characteristics of a file, such as access data, permissions,
names, etc.

Operating System: I/O Management

● The OS must manage I/O and therefore the interaction with the various
hardware devices:
− A common interface for managing various device drivers
− Have different drivers (kernel modules) for different devices, therefore

specific components for the various hardware components of the system
− A system for buffering and caching information to and from various

devices

Operating System: Protection

● The OS must implement a software protection mechanism . This means
managing and controlling the access of various programs (processes) to
shared system resources (e.g., memory).

− Distinguish between authorized and unauthorized use
− Provide basic mechanisms to implement protection

Operating System: Networking

● Networking is now an essential component of an OS, that is, the ability to
make two or more computers (processes) communicate with each other and
share resources.

● An OS provides basic communication protocols such as TCP/IP, UDP
● As well as high-level communication services such as shared file

systems (SMB, NFS) and many others.

Operating System: Command Interpreter

● Operating systems provide a user interface:
− Start or end a program
− Interact with basic operating system components, such as the filesystem

● We can essentially have two types:
− Graphics, and therefore icons and windows
− Textual, command line

Operating System: Command Interpreter

PERSPECTIVE CHANGE

Operating System: Programmer's Perspective
● The System Call (system calls) for example:

VMs, DOCKER and Cloud Computing

Cloud computing
● Virtual Machine; turning one physical server into many virtual servers.

A Virtual Machine (VM) is a software
emulation of a physical computer
that runs its own completely isolated
operating system and applications,
functioning exactly like a separate
physical machine while sharing the
underlying hardware of a host server.

Cloud computing
● Docker vs VM While a Virtual Machine

(VM) emulates an entire
computer system with its
own heavy operating
system kernel, a Docker
container packages only
the application and its
dependencies, sharing the
host system's kernel to
run much faster and more
efficiently.

Cloud computing
● A virtual infrastructure

Cloud computing is the
on-demand delivery of
computing services—such as
servers, storage, databases,
and software—over the
Internet, allowing users to
access technology resources
as a pay-as-you-go utility
rather than owning and
maintaining physical data
centers.

Contents
● Introduction to Informatics

○ What is a computer
○ Networks and TCP/IP
○ Digitalization and basics of data encryption

Binary representation of numbers (short digression)
● In a positional numbering system, given the base , this directly defines

the number of symbols (digits) used to write the number.
− For example in the decimal system we use 10 symbols (0,1,2,3,4,5,6,7,8,9)

● Modern numbering systems are positional, so the number is written
specifying the order of the digits, and each digit takes on a value
depending on its position.

− For example 423 = 4 * 10 2 + 2 * 10 1 + 3 * 10 0

− If you want 4 hundreds, 2 tens and 3 ones

Binary representation of numbers (short digression)
● In general, given a base b, I will have b symbols (digits) and therefore an integer N will

be written as:
− Value N = c n * b n + c n-1 * b n-1 + … + c 0 * b 0

● Similarly if I have a number N = 0.c 1 c 2 ...c n
− N value = c 1 * b -1 + c 2 * b -2 + … + c n * b -n

● Let us now consider the simplest case, that of the representation of unsigned integers
(the Naturals).

● If I use a numbering system with base b with n digits I will be able to represent a
maximum of b n different numbers , therefore all the numbers from 0 to ab n - 1

● For example, in base 10 it is clear that using two digits I can represent all the
numbers from 0 to 99, therefore 10 2 = 100 distinct numbers.

The binary base
● Using a base of 2, therefore only two symbols 0 and 1, always remaining

within the scope of the representation of positive integers using n digits I will
be able to represent at most all the numbers between 0 and 2 n -1

− For example, using two digits I can represent 4 distinct numbers:
− 00 = 0 * 2 1 + 0 * 2 0 = 0
− 01 = 0 * 2 1 + 1 * 2 0 = 1
− 10 = 1 * 2 1 + 0 * 2 0 = 2
− 11 = 1 * 2 1 + 1 * 2 0 = 3

DIGITALIZATION

The binary base
● A byte (a morsel) modernly represents the sequence of 8 bits and has

historically become the basic element of addressability and therefore the
basic unit of measurement of information.

● 8 bits means that with 1 byte I can represent 2 8 = 256 different
values . So in the case of unsigned integers, the numbers from 0 to 255. If I
use a bit to indicate the sign, for example 0 is positive and 1 is
negative, I can represent the integers from -128 to 127 (from 10000000 to
01111111).

● Or with 8 bits I can represent 256 different characters.

ASCII
● Extended ASCII
● use 8-bit
● Original ASCII
● US-ASCII 7-bit

Information coding
● An encoding is a convention, as seen before, therefore the bit sequence

01001100 can represent the character L (uppercase L) or if instead
we mean an unsigned integer value it represents the decimal number
76 .

● For example , every image is made up of pixels. If I used only 1 bit for
each pixel, I could only have black and white images (1 black pixel, 0
white pixels).

Information coding
If I use more bits to represent each pixel, I can instead obtain ranges of grays or
colors. And from there, sounds, videos...

The pixel represents the smallest autonomous element
of the image. Each pixel is therefore characterised by the
own position

The total number of pixels in a digital image is called its resolution . For
example, if I have a 10 x 10 grid, the image will be made up of 100 pixels.

dpi = number of dots per inch, for example in a typical monitor I will
have 72 pixels per inch

Depth: in the case of a grayscale image, 8 bits can be used for each pixel,
thus having 2 8 = 256 shades of gray available.

Information coding
● Color images

In the case of color images, each pixel is characterized by three color
scales for the three primary colors, RGB (Red, Green, Blue).

For example, an 8-bit image will have 256 possible shades of red, 256
possible shades of green, and 256 possible shades of blue for each color.
Therefore, a total of 1,677,7216 possible shades of color. In the case of
12-bit images (high quality professional ones), we will instead have 212 =
4,096 shades of red for each color , for a total of 4096 x 4096 x
4096 = 68,719,476,736$ possible colors for each pixel.

NOTES; OVERFLOW, UNDERFLOW, DATA TYPES

The computers' memory is running out
● OVERFLOW : There are not enough bits to represent the result. UNDERFLOW: Number too

small 3/2, I cannot represent 1.5, I can only represent 1 or 2.
● For example, if I use 8 bits to represent positive integers, I can only represent numbers

from 0 to 255, so what happens if I try to add 1 to 255?
 1 1 1 1 1 1 1 1 +
 0 0 0 0 0 0 0 1 =

 1 0 0 0 0 0 0 0 0 to represent the result not

● 8 bits are enough

Data types
● See the difference between strongly typed and non-strongly typed languages,

dynamic and static typing
● Programming languages have native data types, such as integers,

floating-points, booleans, and characters. Different types have different sizes
and therefore different ranges (exact algebra and non-exact algebra...)

NOTES ON ANALOGUE-DIGITAL CONVERSION

Analog signal
Analog to Digital Conversion

sampling - time
discretization
(Nyquist-Shannon sampling
theorem)
quantization -
discretization of the
amplitude
coding - using binary “words”
to express the value of the
signal

Analog signal
Obviously, fidelity improves as the number of samples per unit of time (sampling
frequency) and the number of quantization levels increase.

Digital audio
● Since the human ear can hear frequencies in a certain range (about 20, 20000 Hz)

the sampling theorem tells us that we should sample at 40 kHz.
● Typically, a number of quantization levels much larger than 256 is used, often 16

bits.
● For example, in the case of a CD we have two channels (stereo) at (practical

engineering requires slightly higher than 40 kHz) 44.1 kHz and 16 bit (2 16 =
65536)
− So the bit rate = 44100 samples/s * 16 bits * 2 channels = 1411200

bits/s = 176400 Bytes/s
− If we want 1 minute of music we need 60*176400 Byte/s = 10584000

Bytes which is about 10 MiB

Final considerations

● Compression of images and sound (and therefore also video) is essentially
based on the elimination of information to which the human ear and the
human eye are not very sensitive.

● But not only that…

CRYPTOGRAPHY BASICS

Cryptography basics
● In computers, information is stored as sequences of bits.
● Cryptographic techniques modify these sequences (strings) to

obtain different sequences that can then be transmitted and
transformed back by the recipient into the original sequence . The
mathematical functions used in the transformation use one or more secret
keys.
− Symmetric encryption: used since the Egyptians and the ancient

Romans
− Asymmetric encryption : dates back to the 70s

Symmetric encryption
● The key used for encryption and decryption, and therefore by the

sender and recipient, is unique . For example, in the Caesar cipher, each
character is replaced with another character offset by k places (the key is the
value of k).

● Monoalphabetic cipher

Symmetric encryption
● I need to find a secure way to exchange the secret key which is unique

for sender and recipient
● - force attack (for example in the case of the Caesar cipher) I try all the

values of ke I see when I get "correct" sentences and words
● Examples of modern algorithms: Blowfish, Twofish, Standard DES or

Triple DES, Standard AES . They are all based on mathematical problems
that are difficult to solve without knowing the secret key.

ASYMMETRIC ENCRYPTION

Asymmetric encryption
The keys used for encryption and decryption are different . The private
key, which must be kept secret, is used to decrypt, and therefore to recover the
original message; the public key is used to encrypt.

Asymmetric encryption
● When the user generates the key pair, he must jealously guard the

private (secret) key . KS and instead distribute only the public one KP .
KS for example in a smartcard and in that case the smartcard itself will
perform the encryption.

● If user Bob wants to write a private message to user Alice, Bob will use Alice's
public key KP and send the resulting cryptogram . Only Alice, who has the
private part of the key KS, will be able to retrieve the original message (in
clear text).

● Asymmetric encryption also used in authentication processes

Asymmetric encryption

Asymmetric encryption: RSA
● The most well-known and used algorithm is RSA (names of the inventors

Rivest, Shamir, Adleman)
● Also for authentication or to guarantee the integrity of a document (including

digital signature)
● Based on prime numbers, that is, those natural numbers that are

divisible only by 1 or by themselves (2, 3, 5, ..., 19249 · 2 13018586 + 1)
● In practice, the security relies on the difficulty of finding the prime

factors of a large number (the modulus). KS and KP are
mathematically derived from these factors.

● Interest in prime numbers and factorization algorithms (Shor's quantum
computer algorithm)

PGP - OpenPGP

OpenPGP
● RSA is an algorithm (actually, two algorithms: one for asymmetric encryption

and one for digital signatures—with several variations). PGP is software,
now a standard protocol, generally known as OpenPGP .

● OpenPGP defines formats for data elements that support secure
messaging , with encryption and signatures, and various related operations
such as key distribution.

● As a protocol, OpenPGP relies on a wide range of cryptographic
algorithms. Among the algorithms OpenPGP can use is RSA .

OpenPGP
● Philip R. Zimmermann is the creator of Pretty Good Privacy , an email

encryption software package. Originally conceived as a human rights tool,
PGP was released free of charge on the Internet in 1991 .

● This made Zimmermann the target of a three-year criminal investigation,
because the government believed that U.S. export restrictions on
cryptographic software were violated when PGP spread worldwide.

● GNU Privacy Guard (GnuPG or GPG) is free software designed to replace
the PGP cryptographic suite.

AUTHENTICATION

SSH Authentication Example

DIGITAL SIGNATURE

Digital Signature
● It is affixed to digital documents in order to guarantee

− Authenticity : therefore guarantee of the origin of the message
− Integrity : The message has not been modified in any way
− Non-repudiation : The source of the message cannot deny having signed it.

● Only the sender can add that particular signature
● Anyone can verify who signed the message (digital document, text, sound, image,

video)
● Basic ingredients of asymmetric encryption system and hash function

Digital Signature: Signature Methods

● CASDES : The file has the pdf.p7m extension and can be read
with signature software (File Protector, DiKe, etc.).

● PADES : PDF extension : the file is signed with signature
software and read with Acrobat Reader.

● XADES : xml.p7m extension , the xml file is automatically read
by the software that receives it

Digital Signature: HASH
● Hash algorithm : MD5, SHA-1, RIPEMD, SHA-256:

− A function that, given a variable-sized bitstream, returns a fixed-sized
string of letters or numbers (a sort of one-time stamp)

− The string is a unique identifier, changing just 1 bit of the source stream
produces a different HASH

− It is not invertible so it is not possible to determine the original flow from
the returned string.

Digital Signature: How it works
● Alice to sign a given object O (a document for example):

− Calculate the HASH of O (also called digest)
− Encrypt the obtained HASH with your private key
− Append the encrypted HASH (the signature) along with its public key to object O, let's

call it F
● Bob to verify Alice's signature:

− Calculate the HASH of O
− Decrypt the encrypted HASH (i.e. Alice's signature F found with the document) using

Alice's public key
− Now check that the values are the same

CA AND CERTIFICATES

CA and Certificates
● How can I be sure that the signature used actually belongs to the signer? To

paraphrase, how can I be sure of the user-public key association?
● Digital certificates serve this purpose. They contain a variety of

information, such as the public key and user data.
● Just as paper certificates allow us to have information about the user
● CA, Certification Authority , guarantees the association between the

Public Key and the owner's identity

CA and Certificates
● Digital certificates: It consists of (X.509):

− Owner’s public key
− His identity (name, surname, date of birth, etc.)
− Public key expiration date
− Name of the CA that issued it
− Digital signature of the CA that issued the certificate

● If we trust the CA (Certification Authority) we can verify its
signature and therefore the identity of the signatory.

CA and Certificates
● CA, Certification Authority , guarantees the association between the digital

signature and the owner's identity
● The digital certificate is signed by an entity called a CA, which certifies its

authenticity. The signing process is performed by the CA by attaching its own
contact information to the certificate and encrypting the entire document with its
private key.

● If a given CA that signs a certificate is not locally trusted, the system verifies that
CA's own certificate (issued by a higher-level CA). This process repeats up the chain
until it reaches a Root CA that is explicitly trusted by the system, thereby validating
the entire chain

HTTPS and CERTIFIED MAIL

HTTPS
● Fundamental protocol for example in e-commerce and home banking
● When I connect to a site via https:

− The server declares its identity by sending its public key certificate
guaranteed by a CA

− My browser (client) verifies Hostname/Domain matches the
identity contained in the certificate

− In modern HTTPS (TLS 1.3), the client and server use a
mathematical method called Diffie-Hellman to generate the same
key independently. The key never travels across the network, so
even if the server's Private Key is stolen later, past conversations
remain safe.

Certified mail

Unlike standard email where you just send data to a server, in the PEC system, both the Sender's
Provider and the Recipient's Provider must be certified and accredited by a government body (in
Italy, AgID). They act as the guarantors of the communication

● Step A: Submission & Acceptance (Ricevuta di Accettazione)
○ You (Sender) send the email to your PEC provider.
○ Your Provider checks the email for viruses and compliance.
○ Your Provider issues a Ricevuta di Accettazione (Acceptance Receipt) back to you.

■ What it proves: This receipt is digitally signed by your provider. It legally proves
when (timestamp) you sent the message and who you sent it to. Even if the
recipient claims they never got it, you have proof you sent it.

Certified mail

● Step B: The Transport Envelope (Busta di Trasporto)
○ Your Provider does not just forward your email. It wraps your original message inside a

new digital package called a Busta di Trasporto (Transport Envelope).
○ Your Provider digitally signs this envelope.

■ What it proves: This guarantees Integrity. The recipient's provider can verify that
the message has not been altered in transit (no Man-in-the-Middle attacks).

Certified mail
● Step C: Delivery (Ricevuta di Consegna)

○ Your Provider sends the envelope to the Recipient's Provider.
○ The Recipient's Provider verifies the digital signature on the envelope (checking it

came from a valid PEC provider).
○ The Recipient's Provider puts the message into the recipient's inbox.
○ The Recipient's Provider issues a Ricevuta di Consegna (Delivery Receipt) and sends it

back to You (Sender).
■ What it proves: This is the most critical receipt. It legally proves the message

reached the destination's address. It is the legal equivalent of the "return receipt"
(cartolina di ritorno) in traditional registered mail.

■ Note: It proves delivery to the inbox, not that the user actually read it. (Just like a
registered letter delivered to your mailbox is considered legally served even if
you don't open it).

INTERNET, OTHER ASPECTS

Deep Web, Tor
● Onion routing. The Tor network is made up of volunteers who use their own

computers as nodes:
● I can reach “hidden” services , but also normal servers via exit nodes

Deep Web, Tor
Normal Servers via Exit Nodes: If you use Tor to browse the
"Clear Web" your traffic leaves the Tor network through an
Exit Node.

1. The Tor client constructs a random circuit through a
series of volunteer nodes to connect to the
destination server. Path Selection: Your client
randomly selects three nodes from this list to form a
"circuit":

a. Entry Node (Guard): The first hop. It sees your IP
address.

b. Middle Node: The second hop. It acts as a buffer.
c. Exit Node: The final hop. It will connect to the

destination server for you.

Deep Web, Tor
Layered Encryption: Your client encrypts the
data three times (like an onion):
1. Layer 1 (Outer): Encrypted for the Entry

Node.
2. Layer 2 (Middle): Encrypted for the Middle

Node.
3. Layer 3 (Inner): Encrypted for the Exit

Node.
The data packet travels through the circuit,
getting "peeled" at each step.

Deep Web, Tor, Bitcoin
The Server's View: The website (Google)
sees a request coming from the Exit
Node's IP address. It has no way of
knowing your IP address.
● Entry Node: Sees the Client (You)

and the Middle Node.
\rightarrow It sees the Client!

● Middle Node: Sees the Entry Node
and the Exit Node. \rightarrow It
sees neither Client nor Server.

● Exit Node: Sees the Middle Node
and the Server. \rightarrow It
sees the Server!

Deep Web, Tor, Bitcoin
Tor Hidden Services (addresses ending in .onion).
The Onion Server wants to stay hidden. It doesn't publish its IP.

● Introduction Points: The server picks 3 random relays in the network to act
as its "Introduction Points."

● It builds encrypted circuits to them and tells them: "If anyone wants to talk
to me, forward their message here."

VPN: Virtual Private Network
● The Secure Tunnel: Think of it as driving a

private armored car through a public
highway. The VPN creates an encrypted
connection over the public Internet,
isolating your data from other traffic

● .Encapsulation: Your original data packets
(Letter) are wrapped inside new VPN
packets (Envelope). The ISP only sees the
outer envelope, not the letter inside.

● IP Masking: You connect to a VPN Server,
and the Server connects to the website.
The website sees the Server's IP address,
not yours, effectively hiding your location.

Bitcoin
● Bitcoin (I quote Wikipedia) Unlike most traditional currencies, Bitcoin does

not use a central authority: it uses a database distributed among the nodes of
the network that keep track of transactions, but uses cryptography to manage
functional aspects, such as the generation of new money and the attribution
of ownership of bitcoins.

● Based on cryptography and hashing algorithms (SHA-256), Bitcoin uses the
SHA-256 hash algorithm to generate verifiable "random" numbers in a way
that requires a predictable amount of computation time. Generating a
SHA-256 hash with a value lower than the current target solves a block.

Blockchain
The Core Concept: A Distributed Ledger
Imagine a notebook (Ledger) that records transactions.
● Centralized (Traditional): The bank keeps the notebook. You trust the bank

not to change the numbers.
● Blockchain: Everyone has a copy of the notebook. To write a new page, the

majority of the network must agree.

Blockchain
The Block (The Container)
● Each block contains three main things:

○ Data: The transactions (e.g., "Alice sends 5 BTC to Bob").
○ The Hash: The block's unique digital fingerprint (SHA-256).
○ The Previous Hash: This is the magic glue. Each block contains the

Hash of the previous block.

Blockchain
The Chain (The Link)
● Because Block 3 contains the Hash of Block 2, and Block 2 contains the

Hash of Block 1, they are mathematically linked.
○ Block 1 (Genesis): [Data | Hash: A123 | Prev: 0000]
○ Block 2: [Data | Hash: B456 | Prev: A123]
○ Block 3: [Data | Hash: C789 | Prev: B456]

Blockchain
Why is this secure? (Immutability) If a hacker tries to change a transaction in
Block 1:
● The data in Block 1 changes.
● Therefore, the Hash of Block 1 changes (from A123 to X999).
● Block 2 immediately becomes invalid because it says "Previous: A123", but

the real previous block is now "X999".
● To fix this, the hacker would have to re-calculate the hashes for Block 2,

Block 3, and every subsequent block

