Programmazione

Loriano Storchi
loriano@storchi.org

http::.//www.storchi.org/

mailto:loriano@storchi.org

Algoritmi

» Gli algoritmi descrivono il modo in cui trasformare l'informazione.
L'informatica si occupa della loro teoria, analisi, progettazione,
della loro efficienza realizzazione ed applicazione.

Un algoritmo e un procedimento formale che risolve un
determinato problema attraverso un numero finito di passi. |
termine deriva dalla trascrizione latina del nome del matematico
persiano al-Khwarizmi, che e considerato uno dei primi autori ad
aver fatto riferimento a questo concetto. L'algoritmo e un
concetto fondamentale dell'informatica, anzitutto perche e alla
base della nozione teorica di calcolabilita: un problema e
calcolabile quando e risolvibile mediante un algoritmo.
(Wikipedia)

Programmazione

e |dentifica l'attivita' mediante la quale si “istruisce” un
calcolatore ed eseguire un particolare insieme di azioni,
che agiscono su dati di ingresso (input), allo scopo di
risolvere un problema e dunque produrre opportuni dati di
uscita (output). Implementazione di un dato algoritmo.

ISTRUZIONI

OUTPUT
>

Linguaggi e livelli

Livello & I Livells degli HLL

Traduzione (eampilator)

Livells 4 | Livello dell'Azsenbly

Traduzione (azrenhler)

Livello del

o | Sistewa Chperative

Parriale interprefarione

Livells delle

Livells . ey .
" l wtruziond macchina

{sistemva operativo

Interpretazione
tivello § | Lballs dellamaicre | rocrmprogrammna)
PraETamMThaT iome

Ezecuzione diretia

Livells 0 iu“un dalla logiea -ﬂgih.la|

Il livello LO rappresenta il
computer reale ed |l
linguaggio macchina che
esso e in grado di eseguire
direttamente. Ogni livello
superiori rappresenta una
macchina astratta. I
programmi (istruzioni) di ogni
livello superiore devono
essere o tradotti in termini di
istruzioni di uno dei livelli
inferiori, o interpretati da un
programma che gira su di
una macchina astratta di
livello strettamente inferiore.

Linguaggio Macchina e
ASSEMBLY

Ogni calcolatore €' in grado di interpretare un linguaggio di basso livello detto linguaggio
macchina, le istruzioni (OPCODE) sono semplici sequenze di bit che il processore
interpreta e seguendo una serie precisa di operazioni. Ogni istruzione a questo livello €'
costituita da operazione estremamente basilari.

Per rendere piu' immediata la programmazioni il primo passo e' stato l'introduzione
dellASSEMBLY, dove il codice binario e' sostituito da istruzioni mnemoniche
umanamente piu' facilmente utilizzabili.

Linguaggio Macchina:
00000000000000000000000001000000
00000000000100000000000001000100
00000010000000010000000000000000
00000001000000000000000000111100

PSEUDO-ASSEMBLY:
Z . INT;
X . INT 8;
y . INT 38;
LOAD RO,x;
LOAD R1y;
ADD RO,R1;
STORE RO,z;

LINGUAGGI

Oggi sono presenti numerosi linguaggi di programmazione. In generale
ogni linguaggio risulta piu' 0 meno adaguato ad uno scopo specifico.

Linguaggi naturali: sono dato spontaneamente sono estremamnte
espressivi ma ambigui: la vecchia porta la sharra

Linguaggi artificiali: sono linguaggi che hanno una data precisa di
nascita ed una lista di autori. | linguaggi artificiali possono essere formali
e non-formali.

Linguaggi formali: non ambigui costituiti da un insieme finito di stringhe
costruite a partire da un alfabeto finito. E' un linguaggio per cui la forma
delle frasi (sintassi) ed il significato dell stesse (semantica) sono definite
In modo preciso hon ambiguo. E' dunque possibile definire una procedura
algoritmica in grado di verificare la correttezza grammaticale delle frasi.

LINGUAGGI

« Per definire un linguaggio rigorosamente occorrono alcuni strumenti
di base:

Alfabeto: insieme dei simboli di base necessari a costituire le
parole

Lessico: insieme delle regole necessarie a acrivere le parole di
un linguaggio (vocabolario)

Sintassi (regole grammaticali): insieme di regole che
permettono di stabilire se una frase (insieme di parole) e' corretta

Semantica: definisce il significato di una “frase” sintatticamente
corretta ad esempio: Int a[5]; in linguaggio C permette di
riservare spazio in memoria necessario a contenere 5 interi

LINGUAGGI

Abbiamo gia' accennato a Linguaggi artificiali, Linguaggio
macchina e Linguaggio di basso livello (ASSEMBLY)

Linguaggi di alto livello si allontanano dalla logica del processore e
sono costruiti per essere semplici, efficienti e leggibili, oltre che
Indipendenti dalla macchina

Sono ad oggi presenti tantissimi linguaggi di programmazione,
anche se quelli effettivamente utilizzati sono una decina.

Di seqguito riporteremo una classificazione sommaria di tali
linguaggi (C, C++, C#, JAVA, PYTHON, FORTRAN, PASCAL,
BASIC, Objectice-C e tantissimi altri). E' chiaro che ogni
paradigma di programmazione €' piu' 0 meno adatto ad uno scopo
piu' 0 meno specifico.

CLASSIFICAZIONE DEI

LINGUAGGI

LINGUAGGI IMPERATIVI

La componente fondamentale del programma €' l'istruzione, ed
ogni istruzione indica l'operazione che deve essere eseguita. Le
singole istruzioni che operato su | dati del programma.

Le istruzioni vengono eseguite una dopo l'altra

Ogni programma e' costituito da due parti fondamentali la
dichiarazione dei dati e l'algoritmo inteso come sequenza di
operazioni

Ogni istruzione e' un ordine (programmazione dichiarativa Il
programma €' una serie di affermazioni)

Di fatto da un punto di vista sintattico molti linguaggi imperativi
utilizzano appunto verbi all'imperativo (i.e. PRINT, READ,)

LINGUGGI IMPERATIVI

READ * A, B
C=A+8B
PRINT C

Quindi una serie di istruzioni leggi A e B, calcola C come
somma di A piu’ B ed infine stampa il risultato

PROGRAMMAZIONE
PROCEDURALE

Possiamo considerarlo un sotto-paradigma della
programmazione imperativa.

Viene introdotto il concetto di sotto programma
(subroutine) o funzioni.

Quindi si introduce la possibilita’ di creare porzioni di
codice sorgente utili ad eseguire funzioni specifiche.

Questi sottoprogrammi possono ricevere parametri di input
e restituire valori di output.

PROGRAMMAZIONE
PROCEDURALE

SUB EXSUMMA (A, B, C)
C=A+B
END SUB

FUNCTION SUM (A, B)
C=A+B
RETURN C

END FUNCTION

MAIN
READ A, B
PRINT SUM (A,B)
EXSUM (A,B,C)
PRINT C

Esempio di utilizzo di una subroutine e di una funzione
per il calcolo della somma (riusabilita’ del codice, librerie

di funzioni)

PROGRAMMAZIONE
STRUTTURATA .

Possiamo considerarlo un sotto-paradigma della
programmazione imperativa.

n pratica il programmatore e' vincolato ad usare o
strutture di controllo canoniche che non includono
Istruzioni di salto incondizionato (GOTO). Dunqgue

sintassi del linguaggio impedisce I'uso di strutture che non
seguono certi vincoli. (non solo)

L'uso dell'istruzione GOTO porta inevitabilmente ad una
scarsa leggibilita’ del codice (spaghetti-code)

PROGRAMMAZIONE
STRUTTURATA

 Esempio da wikipedia

10 dim i

20 1 =0

30 i=1i+1

40 if i <= 10 then goto 70

50 print "Programma terminato."

60 end

70 print i & " al quadrato = " & i * i
80 goto 30

function square(i)
square = i * i

end function

dim i

for i = 1 to 10
print i & "

next

print "Programma terminato."

al quadrato = & square(i)

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI

Possiamo considerarlo un sotto-paradigma della programmazione imperativa.

Tale paradigma di programmazione permette di definire Oggetti Software in
grado di interagire gli uni con gli altri.

L'organizzazione del software sotto forma di oggetti permette un piu' facile riuso
dello stesso. Una migliore organizzazione di progetti di grandi dimensioni.

| Linguaggi OOP prevedono il raggruppamento di parte del codice sorgente In
classi, ogni classe comprende dati e metodi (funzioni) che operano sui dati
stessi. Le classi sono dei modelli astratti che al momento dell’esecuzione
vengono invocate per creare od istanziare oggetti software.

Un linguaggio orientato agli oggetti permette di implementare tre meccanismi di
base utilizzando Ila sintassi nativa del linguaggio : incapsulamento,
polimorfismo, ereditarieta’.

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI

ESEMPIO OGGETTI

QUADRATO 1
CLASSE QUADRATO T LATO = 1.0
ATTRIBUTI COLORE = VERDE
LATO
COLORE
METODI
REAL OTTIENI_AREA()

SET_LATO (VAL) QUADRATO 2

LATO = 1.5
COLORE = GIALLO

PROGRAMMAZIONE ORIENTATA

AGLI OGGETTI

Incapsulamento: separazione precisa fra implementazione ed interfaccia
della classe. Chi usa la classe (oggetto) non deve conoscere il dettaglio
implementativo. Utilizza la classe mediante | metodi ed i dati pubblici
interagendo con loggetto senza appunto consocere il dettaglio
dellimplementazione

MAIN
TRIANGOLO T1
T1.COLORE = GRIGIO
T1.SET_LATO(2.0)

PRINT T1.CALCOLA_AREA ()

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI

Ereditarieta'. una classe puo' ereditare da una classe base
ed evolverne o specializzarne le funzionalita'.

Ad esempio posso Immaginare una classe base
figura_geometriche da cui classi come trinagolo, cerchio,
guadrato ... derivano.

Le classi che derivano da una classe base ereditano tutti |
metodi e le proprieta’ della classe base, puo’ pero’
specializzarsi definendo metodi e dati propri.

Se ad esempio B e’ una sottoclasse (oppure piu’ in generale
un sottotipo) di A, ogni programma/funzione che puo’ usare A
puo’ usare anche B

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI

 Polimorfismo: possiamo cercare di esemplificare questo
concetto dicendo: molteplici definizione della stessa
funzione (overloading), classi e funzioni parametriche
rispetto al tipo di dato. Esempio semplice overloading di
funzioni.

Possiamo formalmente distinguere in almeno quattro tipi di
polimorfismo: per inclusione, parametrico, overloading,
coercion.

Noil faremo solamente qualche semplice esempio utile a
chiarire il concetto generale.

PROGRAI\/II\/IAZIONE ORIENTATA

* Immaginiamo la solita classe figura_geometriche da cui avremo fatto
derivare due classi cerchio e triangolo

* Quando l'utente richiama il metodo calcola area questo eseguira’ una
determinata azione (calcolo dell’area nei due casi pur avendo lo stesso
nome

PROGRAMMAZIONE
FUNZIONALE

Come dice il nome stesso il flusso di esecuzione assume la forma di
valutazione di una serie di valutazioni di funzioni matematiche. Il
programma e' quindi un'insieme di funzioni

Nei linguaggi funzionali puri non esiste il concetto di assegnazione, 0
di allocazione esplicita della memoria.

| valori non si trovano cambiando lo stato del programma, non esiste
appunto l'assegnazione di valore, ma costruendo il nuovo stato
mediante funzioni a partire dallo stato precedente.

Usanti nell'ambito dell' Al (poco usanti o assenti in ambito industriale)

Le funzioni possono essere passate come parametri e ritornate come
“risultato” da altre funzioni.

LINGUAGGI DICHIARATIVI (O
LOGICI)

* Rispetto al paradigma imperativo il programma consiste di
una serie di affermazioni e non di ordini.

Nel programma si specifica il COSA si voglia ottenere non
I COME. Il come e' lasciato all'esecutore

In pratica Il programma (o la sua esecuzione) Si puo’
considerare come la dimostrazione della verita' di
un'affermazione.

LINGUAGGI

Si possono poi classificare | linguaggi anche secondo il tipo di
dato tipizzazione statica e tipizzazione dinamica.

Tipizzazione statica : il programmatore e’ costretto a
specificare esplicitamente il tipo di ogni elemento sintattico Ad
esempio deve specificare il tipo di una variabile ed il linguaggio
poi garantira’ che quella variabile verra’ usata coerentemente
con la dichiarazione.

Tipizzazione dinamica . ad esempio in questo caso | dati
assumeranno un tipo che varia a runtime in funzione di
assegnazioni fatte (vedi Python)

Possiamo poi distinguere anche fra tipizzazione debole e forte

LINGUAGGI

* Linguaggi o paradigmi di programmazione parallela (per le
moderne architetture) se siete cuirosi potete vedere qui ad
esempio http://www.storchi.org/lecturenotes/acr/index.html

Linguaggi esoterici : sono linguaggi voltamente complessi e
poco chiari. Popolari solo fra gli utenti piu' abili ed usati al solo
scopo di mettere alla prova le capacita' di programmazione
(scopo essenzialmente ludico)

Scripting: nati inizialmente per essere usati nelle shell Unix.
Sono linguaggi usati per automatizzare compiti ripetitivi e
lunghi.

Programmazione altri concettl

Il sorgente viene scritto in file di testo ASCII.II sorgente esprime l'algoritmo
Implementato nel linguaggio scelto. Per scrivere il sorgente si possono
usare semplici editor di testo (VI, Emacs). Oppure IDE ambineti di sviluppo
Integrato con altri strumenti, come compilatori , linker e debugger.

Compilazione: il sorgente viene tradotto (dal compilatore) da linguaggio
ad alto livello a codice eseguibile. Il vantaggio e' che l'esecuzione e’
“veloce” e che Il codice viene ottimizzato per la piattaforma specifica. Lo
svantaggio e' che si dovra' ri-compilare per ogni diverso sistema operativo
o hardware.

Linking: ogni programma generalmente fa uso di una o piu' librerie ed Il
linker collega assieme librerie e programma di partenza. | linking puo'
essere sia statico che dinamico (ad esempio librerie .so in Linux/Unix-like
o .dll in windows)

Programmazione altri concettl

* Interpretazione:. onde evitare il problema della portabilita' dei
programmi si €' ricorso al concetto di interpretate In questo
caso il codice sorgente non viene compilato “tradotto” ma
eseguito appunto da un'interprete. Questo Introduce altri
problemi come quello delle prestazioni.

Bytecode, P-code: possiamo definirlo come un approccio
Intermedio in cul il programma sorgente viene “tradotto” in un
codice Iintermedio che viene interpretato da una macchina
virtuale. Questo permette di unire due vantaggi una buona
velocita' di esecuzione assieme ad una estrema portabilita’ del
programma. JIT (Just in Time) al momento dell'esecuzione
compilano il codice intermedio in codice macchina.

Programmazione altri concettl

e Calcolabilita' : Data una funzione essa e’ detta calcolabile
se possiamo trovare un algoritmo (quindi una procedura
che esegue meccanicamente un numero finito di passi)
che la calcola.

Tesi di Church-Turing, la classe delle funzioni calcolabili
coindicide con la classe delle funzioni calcolabili da una
macchina di Turing.

Tutte le macchine di calcolo (computer) possono essere
ricondotte ad una macchina di Turing.

Programmazione altri concettl

MdT: macchina di Turing

__ meccanismo di
controllo
testina di lettura/
// scrittura
Clmr— 4 d

B T T

nastro

Modello deterministico con nastro e istruzioni
a 5 campi:

1 - Un nastro lungo a piacere che puo’
contenere caratteri oppure spazi vuoti

2 - testina/dispositivo di lettura e e scrittura
con cui appunto leggere e scrivere sul nastro
ed ovviamente la testina puo’ muovere |l
nastro a desta o sinistra

3 - La macchina ha uno stato interno

La MdT ad ogni passo legge un simbolo ed ed in funzione del suo stato interno
puo’ cambiare stato e poi scrivere un simbolo nel nastro e poi muovere il nastro a

destra o sinitra.

Il comportamento della MdT e’ programmato definendo delle regole o quadruple

del tipo:

(stato interno, simbolo-letto, nuovo-stato, simbolo-scritto/direzione)

Programmazione altri concettl

 MdT e problema della terminazione: dato un certo
programma e dato un certo input e’ impossibile stabilire se

tale programma terminera’ o meno. (questo prob
fortemente legato al teorema della incompletezza c

)

ema e’
| Godel

Programmazione altri concettl

Complessita’ algoritmica : e’ la misura’ della difficolta™ di un
calcolo (algoritmo + input)

La bonta’ di un algoritmo si valuta in funzione del tempo e dello
spazio necessario alla sua esecuzione, in genrale quindi in
funzione delle risorse richieste.

Chiaramente il tempo di esecuzione e’ funzione del tipo di input
oltre che del tipo di hardware utilizzato, non ha quindi senso
classificare gli algoritmi in funzione del numero di secondo richiesti
alla sua esecuzione.

Il tempo di calcolo si esprime dunque come il numero di operazioni
elementari in funzione della dimensione N dei dati di input

Programmazione altri concettl

Esempio calcolo dell’efficienza di un algoritmi in cui cerchiamo Il
minimo m all'interno di un insieme di N numeri {x1, x2, ..., XN}

Immaginiamo di affrontare il problema come segue:

Scelgo x1 come possibile minimo
lo confronto con x2, poi X3 e cosli’ via

Se trovo un xi piu’ piccolo continuo i confronti con quello cosi
come fatto con x1

Al termine avro’ trovato il minimo

Per fare tutto avro’ fatto N confronti quindi I'efficienza dell’algoritmo
e’ direttamente proporzionale alle dimensioni N dell'input

Programmazione altri concettl

« L'efficienza di un dato algoritmo e’ quindi esprimbile come una
funzione f(N), quindi funzione della variabile N che rappresenta la
dimensione dei dati di input.

- Tale funzione esprime dunque il numero di operazioni
elementari necessarie per risolvere il problema mediante
I'algoritmo dato in funzione della dimensione dell'input

- Rappresenta quindi la complessita’ computazione

- Dato N un algoritmo A e’ piu’ efficiente di un altro B se al
crescere di N f,(N) s’ minore o uguale ad f;z(N)

|l tempo di esecuzione di un programma quindi dipende dalla
complessita’ dell'algoritmo, dalla dimensione di N ed ovviamente
dalla “ velocita’ ” della macchina sul quale e’ eseqguito

Programmazione altri concettl

* Per suddividere gli algoritmi in classi di complessita’ si usa
Il segunte criterio:

Una funzione f(N) si dice che e’ di ordine g(N) e si indica
con f(N) = O(g(N)) se esiste una costante K tale che , a
meno che per un numero finito di valori di N sia sempre
vera la seguente disuguaglianza: f(N) = K*g(N). Si puo’
anche scrivere f(n) / g(N) = K

Ad esempio 2*N + 5 = O(N) infatti 2*N + 5 < 7*N per ogni
N maggiore di zero

Programmazione altri concettl

4 NP Problems I Classi di complessita’ P e NP , se P
sia uguale ad NP o meno ad oggi €’

un problema ancora aperto (problema
P Problems da un milione di dollari Clay Math
Institute)
NP Complete
\ 4 Classe P problemi risolvibili in una

macchina di Turing deterministica in
tempi polinomiali.

Classe NP problemi per i quali non e’ noto un algoritmo con complessita’
polinomiale. Ma sono verificabili invece velocemente

Problemi NP-completi il modo piu’ semplice di descriverla se uno dei problemi NP-
completi e’ facile allora lo sono tutti visto che posso “convertire” la risoluzione di uno
nell’altro. Allo stesso modo se uno e’ difficile sono tutti difficili.

ESEMPIO: |a fattorizzazione in numeri primi di un numero intero problema NP
(molto probabilmente non e’ NP-completo ancora non possiamo dirlo) dato c
trovare i fattoriprimoae btalichea*b=n

Programming, control structures

Loriano Storchi

loriano@storchi.org

http::.//www.storchi.org/

mailto:loriano@storchi.org

FLOWCHART AND

PSEUDOCODE

FLOWCHART AND
- PSEUDOCODE

 Esamineremo solo alcuni esempi di base: calcolare
I'interesse di un deposito bancario

Eart)

Input Amount

Step 1: Read amount, /' Input Years /

Step 2: Read years,

Step 3: Read rate,

Step 4: Calculate the interest with formula
"Interest=Amount*Years*Rate/100

Step 5: Print interest, Pt o

Input Rate

Compute Interest =

/ Output :
/ Interest

| |

| End |

FLOWCHART AND
- PSEUDOCODE

* Determina e mostra se il numero N e pari o dispari

\Start

Input N

Step 1. Read number N, e
Step 2: Set remainder as N modulo 2, modulo 2
Step 3: If remainder is equal to 0 then i
number N is even, else number T~ ne
. < Remainder =0? =
N is odd, ~_
Step 4: Print output. Answer =

ODD

%?/ Output Answer H

FLOWCHART AND
PSEUDOCODE

Per un dato valore, Limite, qual e il numero intero positivo
piu piccolo per cui la somma Somma =1 + 2 + ... +
Numero e maggiore di Limite. Qual e il valore di questa

somma?

Set Number
equal to 0

. Enter Limit
. Set Number = 0.
. Set Sum = 0.
. Repeat the following:
a. If Sum > Limit, terminate the repitition,
otherwise.
b. Increment Number by one.
c. Add Number to Sum and set equal to
Sum.
5. Print Number and Sum.

STRUTTURE DI CONTROLLO

CONTROL STRUCTURES

)

10001001
11110000

—

—
Problem » | O 10000001
00000111

' —

- <«

Algorithm Flowchart Programming language
(Basic ,WB,C, C++, C#, lava, Perl, ..)

Sono tre le strutture fondamentali che vengono utilizzate per la risoluzione
algoritmica dei problemi: selezione, iterazioni e sequenza (sequenza di istruzioni)
(il GOTO presente nei linguaggi macchina dagli anni '70 e stato progressivamente
scoraggiato / eliminato)

Examples: https://bitbucket.org/Istorchi/teaching
https://github.com/Istorchi/teaching

https://bitbucket.org/lstorchi/teaching
https://github.com/lstorchi/teaching

SEQUENZE

Seguences

 La struttura di controllo della sequenza si riferisce
all'esecuzione riga per riga mediante la quale le istruzioni
vengono eseguite in sequenza, nello stesso ordine in cul
appaiono nel programma. Potrebbero, ad esempio,
eseguire una serie di operazioni di lettura o scrittura,
operazioni aritmetiche o assegnazioni a variabili.

Step 1. Read amount,

Step 2: Read years,

Step 3: Read rate,

Step 4: Calculate the interest with formula
"Interest=Amount*Years*Rate/100

Step 5: Print interest,

SCELTE

Selections

La struttura generale di un'istruzione di selezione e la seguente:

if (condition 1) Ci POSSONO ESSERE MOLTI else if

statements 1 Non devono necessariamente mostrare tutti e

- . tre gli elementi, IF, ELSE IF e ELSE, posso
else if (condltlon 2) anche avere un solo IF

statements 2

IF (A= TRUE)
Then B
Else C
End IF

else
statements N
endif

Selections

 Annidamento,posso ovviamente avere If..then.else annidati:
If (condition 1)
statement 1
If (condituion 2)
statements 2
end if
else
statements 3
end if

Operators

* In tutti 1 linguaggi di programmazione, posso utilizzare
operatori di relazione per confrontare numeri e variabili, ad
esempio:

Description Java, C, C++ | Fortran
Int a;

Greater than .GT. . _
a = 4 /] operatori di assegnazione

Greater than or equal .GE. if (a==5)

{

cout << “Hello” << std::endl;

}

Less than or equal LE. else if (a > 5)

{

Equal EQ. cout << a<<“>5"“<< std::endl;

}

Less than .LT.

Not Equal = .NE.

Logical Operators

* DO per scontati gli operatori logici AND, OR e NOT

Logical Operators

Description

Example

AND

X=6
y=3
X<10 && y>1 Return True

X=6
y=3
X==3 || y==3 Return False

X=6
y=3
I(Xx==y) Return True

Esempio la seguente disuguaglianza
s<ac<’

Nei linguaggi di programmazione e
suddiviso in due espressioni
elementari collegate dall'operatore
AND:

(@a>5)AND (a<7)

Bitwise operations

 Non confondere il precedente con le operazioni bit per bit

* Queste sono le operazioni che servono per manipolare dati bit per
bit, da non confondere con quanto visto nella diapositiva
precedente

- & (AND)
| (OR)
N(XOR l.e. 1 XOR 1 is zero)
~ (ones' complement i.e.0to 1 and 1 to 0)
>> (right shift 11100101 >> 1 is 01110010)
<< (left shift)

Bitwise operations

* Un semplice esempio:

L- § python3
Python 3.6.9 (default,
[GCC 8.4.0] on linux

ype "help", "copyright'

60

print(a&b)

> 12

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

Case structure

 Fondamentalmente una serie di if-then-else con qualche vincolo. In pratica,
la scelta tra i blocchi di istruzione e guidata dal valore di una certa variabile:

switch variable: If (variable == vall)

{

case vall: Statements 1
statements 1 } . :
else if (variables == val2)

case val2: {

Statements 2
statements 2 }

élée
default: {

Default statements
default statements }

Example

. . redo@banguo:~jLezioni/iIntroProgrammazionelnformaticafteaching/
Int I [redoibanguo csmall (master)]$ geoo -o swtche swiche.co
) [redo@bangue csmall (master)1$./swtche
I = 4' non uno non due
. . [redolibanguo csmall (mastexr)]
switch (i) E 1

case 1:
printf("vale uno \n");
break;
case 2:
printf("vale due \n");
break;
default:
printf("non uno non due\n");

break;

LOOPS

Loops

Ci sono tre diversi tipi: while..do, do.. while e for

Non tutti | inguaggi hanno necessariamente tutte e tre
gueste strutture

Queste strutture consentono di ripetere un blocco di
Istruzioni finché non si verifica una condizione

Anche In questo caso e possibile annidare piu loop uno
dentro l'altro

While..do e Do..while

* |l blocco di istruzioni inoltre non puo mai essere eseguito, poiché la
condizione e verificata all'inizio, finché la condizione e vera, il blocco di

Istruzioni viene eseguito
WHILE (condition)
statements

END DO

do..while esegue invece il blocco di istruzioni finché la condizione non e
falsa

DO
statements
WHILE (condition)

Example

 Asimple C example:
Inti=0, N=10;
while (i '= N)
[redotbanquo csmall (master)]§ gee -o whiledo whiledo.e |

prlntf("%d \n", |)’ [redoibanguo csmall (master)]$./whiledo

0

I++:

1
2
3
4
2
6
ki
8
9

[

redoibanquo c¢small {(master)]1$ I

Example

print(

Type "help", "copyright'
>>> while True:
. print("here")

Example

Inti=0, N =10;

do

{
printf (“%d \n”, 1);
++; //1=1+1

} while (i >= N);

[redoibanguo c¢small (master)]$ gee -o dowhile dowhile.c

[redoibanguo csmall (master)]$./dowhile
0
[redoibanguo csmall {(master) 15 I

For loop

e Esegue un blocco di istruzioni un numero di volte noto
dall'inizio. Molti linguaggi di programmazione costringono |l
programmatore a utilizzare un contatore.

Generalmente esiste un contatore che e una variabile intera il
cul valore viene "modificato” passo dopo passo

La condizione finale viene generalmente determinata
confrontando la variabile contatore con un valore

for (counter = startingvalue A endvalue STEP = stepvalue)
statements

end for

Example

Nt I;
for (i=0; i<10; ++i)
{

printf (“%d \n”, 1);

[redoibanguo csmall (master) 1§ geocc -o forloop forloop.c

[redoibanguo csmall (master)]$./forloop
0

1
2
3
4
)
6
T
8
9

[

redoiibanquo csmall (master)]$ I

Example

for 1 in range(10):
print(1)

0
1
.
3
=
5
6
7
8
9

ARRAY

Array

Come posso gestire facilmente le informazioni strutturate per
natura? Ad esempio un numero complesso, o un vettore o
una matrice?

Le variabili strutturate tipiche sono gli array

Ad esempio, un vettore di numeri in virgola mobile in C puo
essere dichiarato come: float v [10];

Possiamo quindi accedere all'elemento i-esimo del vettore: v
[I-1] = 3.5;

Allo stesso modo posso definire una matrice (array
bidimensionale) come: float m [10] [10];

Memory Location

200 201 202 203 204 205 206

U

B

|_

D

A

E

c

0

1

45

Index

2D arrav conceptual memory representation

Second subseript

>

abc[0]]0] | abc[0][1]

abc[1]]0] | abe[1][1]

abc[2][0] | abe[2][1]

abe[3][0] | abe[3][1]

abc[4][0] | abe[4][1]

Here my array is abc [5][4], which can be conceptually viewed as

a matrix of 5rows and 4 columns. Point to note here is that subscript
starts with zero, which means abe[0][0] would be the first element of
the array.

Example

* Loop di esempio per eseguire una moltiplicazione scalare tra i vettori

float a[N], b[N];
for (i=0; i<N; ++i)

[redofbangue cesmall (master)]§ gee -o wvet vet.c

a[|] = (ﬂOat)rand()l(ﬂoat)(RAND_MAXIN), [redofbanguo csmall {master)]$./vet

al[il 5.658107

- C b[i] ==> 6.109299
b[i] = (float)rand()/(float)(RAND_MAXIN); % g
} b[i] 1.796469
af[i] 8.166862

1.83471s6
5._.846529
4.221560
0.253342
3.162596
0.8612762
0
9
9
8
0
2
0
8
)
0

VYV VVVVVVVVVYVYVY

bli]

S = 0.0; a[il
. . _ bli]

for (i=0; i<N; ++i) alil
bli]

{ ali]

b[i]
=c + NEIY I E afi]
s = s + a[i]*b[i]; b
af[i]
b[i]
af[il]
b[i]
al[il
bli] ==>
236.85083

-836590
. 767909
. 780582
. 738890
.530768
.689885
.923382
.809632
.625731

import random

N

a
o]

in range(N):
.append(random.randrange(l, 30))
.append(random.randrange(l, 30))

1 in range(N):
print("%3d %3d"%(a[1i], b[1]))

0.0
i in range(10):
s = s + float(a[i]*b[i])

Print{ mmn }
print("S = %.5e"%s)

Programming, control structures

Loriano Storchl
lorlano@storchi.org

http::.//www.storchi.org/

mailto:loriano@storchi.org

YOU CAN TRY USING SCRATCH

Scratch

* Scratch is a block-based visual programming
language and online community targeted primarily at
children.

®6
&

Scratch

| «p @ 5 File Edit Share Help

Motion " Control g % Spritel
Look: 5 il i
ooKS ensing n k(L

Sound Oparatore scripts _Costumes Y Sounds

Pen ¥ariables

move steps
turn degrees

turn b degrees

point in direction m

point towards ight a | pressed?

go to = =] ¥:
go to J
glide secs to x: Qg v:

change x by =224y -122

set x to m

change y by %
LXT
= P

set y to
m Spritel

if on edge, bounce

= position
y position
direction

Loriano Storchi

loriano@storchi.org

http::.//www.storchi.org/

mailto:loriano@storchi.org

Programming Laguanges

* Abbiamo visto che i linguaggi di programmazione possono
essere classificati come (non solo ma ...):

— Dichiarativo

* Logica

* Funzionale
- Imperativo

* Procedurale

* QOrientato agli oggetti
* Python e imperativo e sia procedurale che orientato agli oggetti

Programming languages

Possiamo classificare 1 linguaggi di programmazione
anche come tipizzazione dinamica o statica e tipizzazione

forte e debole
Tipizzazione debole e dinamica, esempio utilizzando Perl:

[redofibangue tipiz (master)]$ cat test.pl
Eilowm 2 £ "3";

print $i, "\n";

[redoibanquo tipiz (master)]$ perl test.pl

5
[redoibanquo tipiz (master)]5 I

* Python dynamic and strong typing

the Python interpreter

Molto materiale / documentazione disponibile (infatti,
guesta introduzione e fortemente basata su:

— http://tdc-www.harvard.edu/Python.pdf

Python puo essere trovato pronto per l'uso sia su Linux
che su Mac OS X. Per Windows potete trovare facilmente i
binari al seguente URL.: http://python.org/

Molti moduli (librerie) disponibili, nel nostro caso alcuni utili
[Interessanti: numpy, matplotlib e pystat

python 2.x vs python 3.X, useremo python 3.x la versione
2.X e stata ora ignorata.

the Python interpreter

[redo@virtualinux ~]$ python
Python 2.7.10 (default, Jun 20 2016, 14:45:40)

[GCC 5.3.1 20160406 (Red Hat 5.3.1-6)] on linux2
Type "help", "copyright”, "credits" or "license" for more information.

>>> (4*5)/3
6

»>> exit()
[redo@virtualinux ~1$ [} To exit press CTRL-D or
type exit()

the Python interpreter

Possiamo semplicemente scrivere il sorgente usando un banale editor ASCI|

$ python file.py

L § cat file.py
a=>5
b =95

c = a/b
print(c)
| redo@buchner /home/red

L- § python3 file.py
1.0

the Python interpreter

Usare un IDE: File — PyDev Project

Activities = Eclipse Oxigen = gio 07:27 i 2) B ~

Edit Refactoring Source Navigate Search Pr PyDev Project

B R iBigie-P-2 @S- la Create a new PyDev Project. &(%E

i PyDevPackage.. X ~— ® [main X - & 17 Outline x I 8 =
‘__’[9 i = g Project name: {

type filter text

» 22 mcsin
e : Project contents:

» &2 newturtle L. - kurtle
i # Use default

b & pippo i -random

b £ stars """ Directory [;’home;'redo;’eclipse-workspace] IR
P &= RemoteSystemsTempFiles . * colors
- Project type ot
Choose the project type o x
® Python @ Jython @ IronPython ey

Grammar Version ™ size
* color

LSame as interpreter

™ answer
Interpreter

[Default - currently: python

Click here to configure aninterpreter not listed.

Additional syntax validation: <no additional grammars selected>.

* Add project directory to the PYTHONPATH

® Create 'src’ folder and add it to the PYTHONPATH

@ Create links to existing sources (select them on the next page)

® Don't configure PYTHONPATH (to be done manually later on)
Working sets

B Add oroiect Fo workina sets [New... | ‘
12} < Bacl Cancel] [Finish]

2 Console X

No consoles to display

1item selected

the Python interpreter

Click su Project e poi con il pulsante destro New - File

Activities = Eclipse Oxigen ~ gio 07:35
New File
File Edit Refactoring Source Navigate Search Prepggo

Eﬁ g‘lﬁgg EQ‘ . » F gg’ gg Create a new file resource.

¥ PyDevPackage.. X~ & [main X Enter or select the parent folder:

S5/ms -

- rova
» £€ mcsin {p

» & newturtle

» 2 pippo 2 mcsin

v & prova ' & newturtle
» & python (fusr/bin/pythoi e & pippo

» #stars

P B RemoteSystemsTempFiles

S dm

[o o e = |

& prova
&= RemoteSystemsTempFiles
®stars

File name: { main.py

L.

print

answer

2 Console x

No consoles ko display

[Cancel][

Finish

2. Qutline x [[ESCaCHEN For=iu

type filter text

- turkle
-random
= answer
= colors
Sl ¢
& X
i)
= size
= color
= answer

& 1 item selected

the Python interpreter

Click Run As

Activities (= Eclipse Oxigen ~ gio 07:36 o -

eclipse-workspace - prova/main.py - Eclipse
File Edit Refactoring Source MNavigate Search Project Pydev Run Window Help

i FAR =iaie B O E@F O H e -
Run As...
PyDev Package... X ~—=—m main (stars) B *main (prova) X
ES(eo - a=4

» & mcsin b =5

» & newturtle i

» £ pippo
v & prova

& main.py

» & python (/usr/bin/pythoi
P #stars

P &= RemoteSystemsTempFiles

2 Console X

No consoles to display ak this Lime.

|| writable || Insert

the Python interpreter

Click Run As

= Console X

<terminated= main.py [/usr/bin/python]

=2 Console X

<terminated> main.py [/usr/bin/python]

Or Jupyter

Applicazione web Iin cul puol creare e condividere
documenti che contengono codice live, equazioni,

visualizzazioni e testo, Jupyter Notebook e uno degli
strumenti ideal

@
N
jupyter
¢ -

Or Jupyter

redo@buchner FondEmentiDiProgrammazione]S jupyter notebook
Serving notebooks from local dir

The Jupyter Notebook is running
http://localhost:8888/?token=510

C @ @ localhost
4+ Most Visited € eeeqw motion & RPi Cam Controlvé.3....

C 18:32:09.368 NotebookApp]

copy}ppaste this URL into your bi I .JUpy‘tEF Untitled Last Checkpoint: 3 minutes age (unsaved changes)

to 1 og in with a token: File Edit View nsert Cell Kernel Widgets Help
http://localhost:8888/7?toke

A B+ = @& B ¥ MR B C P Markdown
Accept

print("Hello World")

Hello World

Questo e' il calssico esempio di print in python 3

c=a+b

print(c)

7

altro semplice esempio

Or Colab

. What is Colaboratory?

Colaboratory, or "Colab” for short, allows you to write and execute Python in your browser, with

s Zero configuration required
® Free access to GPUs
* Easy sharing

Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction o Colab to learn
mare, or just get started below!

Let's start

Google Drive

Or Colab

cO £ firstexample.ipynb %

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text
o a=>5
[
C a/ b

print(c)

HELLO WORLD!

Hello world

* || classico programma utilizzato per illustrare le basi
sintattiche di qualsiasi linguaggio di programmazione

print ("Hello World")

| redo@buchner /home/redo/
- § python3 hello.py
Hello World

HELLO WORLD 2

Hello world

l— § cat name.py
name = input("Insert your name: ")

print("Ciao ", name)

lL- § python3 name.py
Insert your name: Loriano
Ciao Loriano

Hello world

USER USER

NAME NAME
VARIABLE VARIABLE

The variable has no
value until the user
enters a name.

PYTHON BASICS

Python Basics

* Vediamo un semplice codice che ci permette di illustrare
alcune delle caratteristiche di base della sintassi di Python:

- Posso aggiungere commenti usando Il carattere #

- = viene utilizzato per assegnare valori alle variabili

— Per fare operazioni tra numeri e variabili posso usare |
soliti operatori +, -, *, /

34 - 23 # commentare 11 codice
"Hello™
3.45

Python Basics

- == e |'operatore che serve a confrontare i valori
— Gli operatori logici sono invece: and, or, not

- L'operatore + puo essere utilizzato anche per
concatenare le stringhe

3.45 or
x + 1
y + " World"

Python Basics

— print e Il comando di base utilizzato per stampare a
schermo

- Le variabili non devono essere dichiarate
esplicitamente la prima volta che assegno un valore
alla variabile viene creata e gli viene assegnato un

tipo

print("Valore di x: ", X)
print("Valore di v: ", ¥)

print(z)

Python Basics

commentare 11l codice

¥ o+

print("Valore di
print("valore

print(z)

Valore di x: 12
Valore di y: Hello world

3.45

Python Basics

* Non ci sono caratteri di fine riga, se una riga di codice
deve essere interrotta su piu righe, usa \

* Python 2 Per impostazione predefinita | numeri sono interi,
quindi z = 5/2 dara come risultato 2

el - loltrehw? . py

z =5/ 2
print(z)

z =5.0/ 2.0

print(z)

| redo@buchner /home/redo/Lezic
lL- § python2 oltrehw2.py

2

2.5

| redo@buchner /home/redo/Lezic
L- § python3 oltrehw2.py

2.5
2.5

IF ... THEN ... ELSE

If ... then ... else

INSERT NUMBER |
IF | LOWER THEN O

PRINT “il numero e minore di zero”
ELSE IFI EQUALTOO

PRINT “ll numero e uguale a zero”
ELSE

PRINT “ll numero e maggiore di zero”
ENDIF

If ... then ... else

* Per identificare i blocchi di codice in Python, vengono
utilizzati spazi vuoti, non ad esempio {} come in C/C ++

S cat oltrehwd.py
si = input ("inserisci un numero: ")
1 = float(si)

if 1 < 0 :

print("numero inferiore a zero")
elif 1 == 0:

print("inseiro uguale a zero")
else:

print("numero maggiore di zero")

inseriscl un numero: -31
numero i1nferiore a zero
inseriscl un numero: 3.0
numero maggiore di zero

If ... then ... else

* Oppure puol usare eval()

= eval(input ("inserisci un numero: ")) The expression argument
is parsed and evaluated as a

Python expression (technically
speaking, a condition 1list)
using the globals and locals
dictionaries as global and local

namespace.

if si < 0
print("numero inferiore a zero")

print("numero maggiore di zero")

L- $ python3 oltrehwd.py
inserisci un numero: 10
numero maggiore di zero
inserisci un numero: print("si ", si)
si 10
Traceback (most recent call last):

File "oltrehwd.py", line 20, in <module>

if si < 0

TypeError: '<' not supported between instances of 'NoneType' and 'int'

LOOPS

Loops

SETNTOO
SETNnTOO

Repeat the following:
a. If n >= 10, terminate the repetition,

otherwise.
b. Increment N by n
c. PRINT n

PRINT N

Loops

* Per identificare i1 blocchi di codice in Python, vengono
utilizzati spazi vuoti, non ad esempio {} come in C/ C ++

 Python e’ case sensitive

L § less oltrehw3.py

for n 1n range(0,10):
N =N+n
print(n)

print("Valore finale: "

y range(@,10) :
N =N+n
print(n)

print("valore finale: ", N)

alore finale: 45

EXAMPLE

Example of a numerical procedure

« E possibile trovare un algoritmo per risolvere quasi tutti i problemi, ma non
tutti. Ad esempio, calcola le soluzioni di un‘equazione del secondo ordine:

INPUT A, B, C

COMPUTE D = (B*B)-(4 *A* C)

IF D>=0.0
SOL1=(-1,0* B + SQRT(D)) / (2,0 * A)
SOL2=(-1,0*B - SQRT(D))/ (2,0 *A)
PRINT SOL1 AND SOL2

ELSE
PRINT “non ci sono soluzioni reali”

Example of a numerical procedure

L § cat solv.py
import math

a float(input("insert a:"))
b float(input("insert b:"))
C float(input("insert c:"))

print("a = ", a, " b =", b,
delta = math.pow(b, 2.0) - (4.0 * a * ¢)

1f (delta >= 0):
tn = math.sqrt(delta)
soll = ((-1.0 * b) + tn) / (2.0 * a)
s0l2 = ((-1.0 * b) - tn) / (2.0 * a)
print(soll, so0l2)

else:
print("No real solutions")

Example of a numerical procedure

B Console x TR BEEREEwE e
<terminated= main.py |/usr/bin/python

insert a:l

insert b:15

insert c:2.5

4= 1.8 b= 15.8 c = 2.5

-0.168560850692 -14.8314391403

ESERCIZIO 1

EXERCISE 1

e Scrivi un programma in Python che legga 10 numeri, dopo
aver calcolato il valore medio e stampato il risultato

[redofbanguo esercizipython (master)]$ python exl.py
inserisci il numero
inserisci i numero
inserisci i numero
inserisci i numero
inserisci i numero
inserisci i numero
inserisci i numero
inserisci i numero
inserisci i numero
inserisci i numero
la somma: 245.0

alore medio: 24.5
[redoiibanguo esercizipython {master}]$ I

WY oM =100 W

BREAK

Break

* L'interruzione solitamente nidificata sintatticamente in un
ciclo for o while, termina il ciclo piu vicino, saltando la
clausola else opzionale se il ciclo ne ha una.

L § cat testbreaks.py
for 1 in range(0,10):
print("1: ", 1)
if 1 > 5:
break:;

0
1
2
3
4
5
b

Break and nested loops

lL- § cat testbreaksl.py
for 1 in range(1l0):
print("loop 1: ", 1)
for 3 in range(10):
print (" loop 2: ", 7J)
if (3 > 5):
break;

B BB B BRI B BB BRI BB R R RO

Break and nested loops

lL- § cat testbreaks2.py
for 1 1n range(10):
print("1l) loop 1: ", 1)
for 7 in range(10):
print (" loop 2: ", 7J)
if (j > 5):
break;
print("2) loop 1: ", 1)

RANDOM NUMBER

Random Number

https://docs.python.org/2/library/random.html

Pseudo Random vs Random

cat /dev/urandom

cat /dev/urandom | od -vAn -N2 -tu
cat /dev/random

cat /dev/frandom | od -vAn -N2 -tu

[redo@buchner -]$§ cat /dev/random | od -vAn -N2 -tul
38004

.ﬁ.c
Lreduﬁbqgﬁqe; ~]18 cat /dev/random
€ €l s AR O C

https://docs.python.org/2/library/random.html

Random Number

- random.randint(a, b) genera un numero intero random
N nell’intevalloa<=N<=0Db

- § cat rnd.py
import random

for 1 1n range(100):
print(random.randint(0,10))

https://docs.python.org/2/library/random.html

Random Number

random

i range(100) :
print({random. randint(@,10))

ESERCIZIO 2

Exercise 2

Scrivi un programma che generi un numero casuale R
compreso tra 0 e 20 e chieda all'utente di indovinare il numero
con un massimo di 10 tentativi. Ogni volta che Il programma
scrivera semplicemente se il numero inserito € maggiore o
minore di R. Chiaramente se il numero inserito e uguale al
numero casuale R generato il programma termina

numero: 10
inserito e' troppo piccolo
numero: 18
inserito e' troppo grande
numero: 15
inserito e' troppo grande
numero: 12
bravo indovinato

Pseudocode

GENERATE A RANDOM NUMBER rnd

Repeat the following:
INPUT b
IF b 1S EQUAL TO rnd
PRINT “well done”

BREAK
ELSE IF b < rnd

PRINT “inserted number is too small”
ELSE

PRINT “inserted number is too big”
ENDIF

Python (strutture dati)

Loriano Storchl
loriano@storchi.org

http::.//www.storchi.org/

mailto:loriano@storchi.org

| numeri complessi

* | numeri complessi sono intrinsecamente definiti ed usabili
In python

.real, " ", a.imag

a
a
b
b

.real, " ", b.imag

* b
type(c), " valore ", ¢

if type(c) == complex:
print "c e\' un numero complesso"”

[redo@banquo datastr (master)]$ python complex.py

<type 'complex's valore (1l1+10j)
c &' un numero complesso
[redo@banquo datastr (master)]$ I

Strutture dati

Le strutture dati permettono di organizzare i dati in modo
da rendere il loro uso e la loro manipolazione piu' efficiente

Vedremo in particolare le stringhe, le liste, le tuple, |
dizionari ed | set.

Nol vedremo solo le basi minime di uso utili allo
svolgimento di esercizi base

Le stringhe

* Una stringa e' una sequenza di caratteri, in python ci sono
diversi metodi/operazioni utili alla manipolazione delle
stringhe, una stringa in generale puo' essere vista come

un array di caratteri

"hello"
"world"

strl + " " + str2

3*(strl+" ")

strl[0]

strl[0:3]

strl[-2:]
[redo@banquo datastr (master)]$ python strinl.py
ello world
ello hello hello

el
0
[redo@banquo datastr (master)]$% I

Le stringhe

 Come detto la classe in guestione ha diversi metodi
vediamo solo alcuni

[redo@banquo datastr (master)]$ cat strin2.py
"Hello, World!"
str.find("11")
if index == 0:
print “"a ", index, " trovato ", str[index]

str.split(" ")
0
r in res:
idx += 1
print idx , " - ", r

1 in range(0,len(str)):
print str[i]
[redo@banquo datastr (master)]$ python strin2.py
2 trovato 1
- Hello,
- World!

Liste

* Le liste sono sequenze ordinate di oggetti, molte
operazioni di base sono in comune con le stringhe

a =[1, "pippo", 4.5, "pluto"]

print al[0@]

for i in range(0,len(a)):
print a[il]

for 1 in a:

print 1
[redo@banquo datastr (master)]$ python listel.py

[redo@banquo datastr (master)]$ l

Liste

e La lista ha molti metodi utili vediamone alcuni

[redo@banquo datastr (master)]$ cat liste2.py
a=1[1, 3.5, -6.0, 5]

a.append(46)

print a

print "rimuove 1\'ultimo elemento: ", a.pop()
a.append(46)

1 = 1len(a) - 1

print "rimuove 1\'elemento ", i1, " ", a.pop(i)
a.sort()

print a

[redo@banquo datastr (master)]$% python listel.py
[1, 3.5, -6.0, 5, 46]

rimuove L1L'ultimo elemento: 46

rimuove l'elemento 4 46

[-6.0, 1, 3.5, 5]

[redo@banquo datastr (master)1s$ |}

Tuples

* Le tuples in python sono molti simili alle liste solo che la
loro manipolazione e' piu' rapida visto che sono
“immutabili” EEEEERCE

for 1 in range(len(t)):
print t[il]

for val in t:
print val

ma posso modificare un valore ?
t[1] = ©
[redo@banquo datastr (master)]$ python tuples.py

10.0
Traceback (most recent call last):
File "tuples.py"”, line 9, in <module>
t[1l] = 0
TypeError: 'tuple’ object does not support item assignment
[redo@banquo datastr (master)]$ [

Piccola precisazione

[redo@banquo datastr (master)]$ cat tuples pres.py
=(1,3.5,8,10.0,[10,5])

or val in t:
print val

ma posso modificare un valore se mutabile
[4]1[1] = ©

[redo@banquo datastr (master)]$ python tuples pres.py

(1, 3.5, 8, 10.0, [1l0, O])
[redo@banquo datastr (master)l$ []

Dizionari

* Un dizionario €' una sequenza di elementi , ogni elemento
a' una coppia chiave, valore. Le chiavi sono uniche ed |
dizionari si creano usando le parentesi graffe

d = {"k1":1, "k2":"valore", 3:"val3"}
print d[3], d["kl"]
di"quattro"] = 4
print d
if d.has key("quattro"):
print "chiave presente"”
if not d.has key(4):
print "chiave non presente"”
[redo@banquo datastr (master)]$ python dizl.py
val3 1
{'k2': 'valore', 'kl': 1, 3: 'val3', 'quattro': 4}
chiave presente
chiave non presente
[redo@banquo datastr (master)]s |

Dizionari

{"kl"- , k2":"valore", 3:"wval3", "quattro":4}
for X in d.itervalues():
print x
Iprint " "
for x in d.iterkeys():
print x
print " "
for x in d.iteritems():
print x
print x[0], x[1]
E[redo@banquo datastr (master)]$ python dizZ2.py

('k2', 'valore')
jk2 valore

(3, 'val3')

Dizionari

d = {"k1":1, "k2":"valore", 3:"val3", "quattro":4}
del d["kl1l"]
for x in d.iteritems():
print x
d.clear()
print len(d)
for x in d.iteritems():
print x
[redo@bangquo datastr (master)]1$ python diz3.py
('k2', 'valore')
(3, 'val3')
("quattro’, 4)
0

Reference

 Quando dichiaro una variabile sto chiedendo una certa
guantita' di spazio in memoria

* |In python l'operazione di assegnamento manipola |
riferimenti , quindi X =y non crea una copia dei dati
contenuti In y In X, ma crea un riferimento a 'y, X punta ad y

[1,2,3,4] Quando scrivo x = 4
a viene allocato lo
ppend(5) spazio in memoria
nt b necessario a
contenere l'intero 4 e
poi viene
orint y “memorizzato
I'indirizz lla” (cr
[redo@banquo datastr (master)]$ python refer.py : -d - 0 dellaiCEal
il riferimento alla)
[1, 2, 3, 4, 5] : : :
- locazione di memoria
in X

I-

mnuneE-@ iinl

Reference

* Cosa succede veramente guando incremento x ?

L'interprete recupera il valore contenuto nell'indirizzo di
memoria a cul X fa riferimento

Viene calcolato il risultato dell'operazione 3 + 1 ed il risultato
viene memorizzato in una nuova locazione di memoria

Si cambia il riferimento In x, X adesso fara' riferimento al
nuovo Iindirizzo in memoria dove e' memorizzato il valore 4

Python ha un garbage collector che elimina libera tutta la
memoria allocata quando non ci sono piu' nomi che fanno
riferimento alle zone di memoria in questione

VETTORI

Vettori

e | vettori sono estremamente utili in fisica. La caratteristica
principale di un vettore e che ha sia una grandezza (o una
dimensione) che una direzione.

 Un esempio di una grandezza vettoriale e velocita. Questa
e la velocita, in una particolare direzione.

Vettori

e | vettori sono estremamente utili in fisica. La caratteristica
principale di un vettore e che ha sia una grandezza (o una
dimensione) che una direzione.

 Un esempio di una grandezza vettoriale e velocita. Questa
e la velocita, in una particolare direzione.

Vettori

e | vettori sono estremamente utili in fisica. La caratteristica
principale di un vettore e che ha sia una grandezza (o una
dimensione) che una direzione.

 Un esempio di una grandezza vettoriale e velocita. Questa
e la velocita, in una particolare direzione.

Vettori

e TODO come rappresento un vettore ? Vedi una lista e poi
magari rappresenta anche con matplotlio poi somman
sottrazione prodotto scalare e vettoriale

MATRICI

Una matrice

 Posso usare una lista di liste per memorizzare una matrice
In modo semplice

import random
import math

O |

L L
L L
I I

for i in range(len(A)):
for j in range(len(A[©])):
A[il[j] = random.uniform(©.0, 1.0)

print "Matrix A"

print A

[redo@banquo mtxmtx (master)]$ python storemtx.py
Matrix A

[[0.19756583801959704, 0.44836839370148995, 0.278
0.9080131010804726, 0.36798895266505693], [0.471
.5738920118128268]]

Moltiplicazione matrice matrice

B =

Il prodotto e' definito solo
per matrici con dimensioni
compatibili

Moltiplicazione matrice matrice

Esercizio

e Scrivere un programma che date due matrici 3x3 riempite

con numeri random calcoli e stampi il risultato del prodotto
matrice matrice

panquo mtxmtx 5 python mtx.py
Matrix A
[0.19246968384248186, 0.9696947765114629, 0,8237325914685499]
[0.1779860039944552, 0.9755353119130369, 0.8217085413339825]
[0.41279486028220536, 0.057793958446992644, 0.402089824384814]
Matrix B
[0.7196544280415835, 0.8235257700392403, 0.9349263737223458]
[0.27393524261728885, 0.7093719818717363, 0.440755172029067]
[0.12608819669592142, 0.939121875851728, 0.4639718068159948]
Matrix C
[0.5080081911273185, 1.6199633465203456, 0.9895316704002202]
[0.49892966644110487, 1.6102779453343112, 0.9776256401093906]
[0.3636002319703472, E.?EEEEEQ?EIEBEEEE, 0.5979641302345579]

ESERCIZI ED ESEMPI

Calcolo Pl con metodo MC

import random
import math
import sys

DIM = 100000

if len(sys.argv) != 2:
print("usage: ", sys.argv[@] , " NUM ")
exit(1)

else:
DIM = int(sys.argv[1l])

circle count = 0@

for 1 in range(©®,DIM):

X random.uniform(0.0, 1.0)
y = random.uniform(0.0, 1.0)

if (math.sqrt((math.pow(x, 2.0) + math.pow(y, 2.0))) < 1.0):
circle count = circle count + 1

pi = float(circle count) / float(DIM)

print(4.0 * pi)

Esercizio

e Calcolo di integrale con metodo MC:
5

in(x)dx=cos(2)—cos(5)=—0,69981

Dangquo mcsin

eal Om0.013s
ser Om0.010s
Om0@.003s
[redo@banquo mcsin (master)]$
0.726

eal Om0.017s
Omb.014s
Omb.003s

(master) 1%

eal OmO.049s
Omd.040s

(master) 1%
0.70938

CEN OmO.1l15s

Om0.108s

Om0.007s
[redo@banquo mcsin (master)]$
0.703062

eal Oml.049s
ser Oml.021s
Om@.027s
[redo@banquo mcsin (master)]$
0.7001124

eal Oml0.226s
Oml0.105s

100000

1000000

10000000

redo@banquo mcsin (master)]$ python mcsin wplt.py 100000
0.696206603137

Figure 1

Vediamo un
primo
esempio di
uso di numpy
e matplotlib

D0 O+ EiE

