

Programmazione

Loriano Storchi

loriano@storchi.org

http:://www.storchi.org/

mailto:loriano@storchi.org

Algoritmi

● Gli algoritmi descrivono il modo in cui trasformare l'informazione.
L'informatica si occupa della loro teoria, analisi, progettazione,
della loro efficienza realizzazione ed applicazione.

● Un algoritmo è un procedimento formale che risolve un
determinato problema attraverso un numero finito di passi. Il
termine deriva dalla trascrizione latina del nome del matematico
persiano al-Khwarizmi, che è considerato uno dei primi autori ad
aver fatto riferimento a questo concetto. L'algoritmo è un
concetto fondamentale dell'informatica, anzitutto perché è alla
base della nozione teorica di calcolabilità: un problema è
calcolabile quando è risolvibile mediante un algoritmo.
(Wikipedia)

Programmazione

● Identifica l'attivita' mediante la quale si “istruisce” un
calcolatore ed eseguire un particolare insieme di azioni,
che agiscono su dati di ingresso (input), allo scopo di
risolvere un problema e dunque produrre opportuni dati di
uscita (output). Implementazione di un dato algoritmo.

ELABORATORE
ELETTRONICOINPUT OUTPUT

ISTRUZIONI

Linguaggi e livelli

Il livello L0 rappresenta il
computer reale ed il
linguaggio macchina che
esso è in grado di eseguire
direttamente. Ogni livello
superiori rappresenta una
macchina astratta. I
programmi (istruzioni) di ogni
livello superiore devono
essere o tradotti in termini di
istruzioni di uno dei livelli
inferiori, o interpretati da un
programma che gira su di
una macchina astratta di
livello strettamente inferiore.

Linguaggio Macchina e
ASSEMBLY
Ogni calcolatore e' in grado di interpretare un linguaggio di basso livello detto linguaggio
macchina, le istruzioni (OPCODE) sono semplici sequenze di bit che il processore
interpreta e seguendo una serie precisa di operazioni. Ogni istruzione a questo livello e'
costituita da operazione estremamente basilari.

Per rendere piu' immediata la programmazioni il primo passo e' stato l'introduzione
dell'ASSEMBLY, dove il codice binario e' sostituito da istruzioni mnemoniche
umanamente piu' facilmente utilizzabili.

Linguaggio Macchina:
00000000000000000000000001000000
00000000000100000000000001000100
00000010000000010000000000000000
00000001000000000000000000111100

PSEUDO-ASSEMBLY:
 z : INT;
 x : INT 8;
 y : INT 38;
 LOAD R0,x;
 LOAD R1,y;

ADD R0,R1;
 STORE R0,z;

LINGUAGGI

● Oggi sono presenti numerosi linguaggi di programmazione. In generale
ogni linguaggio risulta piu' o meno adaguato ad uno scopo specifico.

● Linguaggi naturali: sono dato spontaneamente sono estremamnte
espressivi ma ambigui: la vecchia porta la sbarra

● Linguaggi artificiali: sono linguaggi che hanno una data precisa di
nascita ed una lista di autori. I linguaggi artificiali possono essere formali
e non-formali.

● Linguaggi formali: non ambigui costituiti da un insieme finito di stringhe
costruite a partire da un alfabeto finito. E' un linguaggio per cui la forma
delle frasi (sintassi) ed il significato dell stesse (semantica) sono definite
in modo preciso non ambiguo. E' dunque possibile definire una procedura
algoritmica in grado di verificare la correttezza grammaticale delle frasi.

LINGUAGGI

● Per definire un linguaggio rigorosamente occorrono alcuni strumenti
di base:

– Alfabeto: insieme dei simboli di base necessari a costituire le
parole

– Lessico: insieme delle regole necessarie a acrivere le parole di
un linguaggio (vocabolario)

– Sintassi (regole grammaticali): insieme di regole che
permettono di stabilire se una frase (insieme di parole) e' corretta

– Semantica: definisce il significato di una “frase” sintatticamente
corretta ad esempio: int a[5]; in linguaggio C permette di
riservare spazio in memoria necessario a contenere 5 interi

LINGUAGGI

● Abbiamo gia' accennato a Linguaggi artificiali, Linguaggio
macchina e Linguaggio di basso livello (ASSEMBLY)

● Linguaggi di alto livello si allontanano dalla logica del processore e
sono costruiti per essere semplici, efficienti e leggibili, oltre che
indipendenti dalla macchina

● Sono ad oggi presenti tantissimi linguaggi di programmazione,
anche se quelli effettivamente utilizzati sono una decina.

● Di seguito riporteremo una classificazione sommaria di tali
linguaggi (C, C++, C#, JAVA, PYTHON, FORTRAN, PASCAL,
BASIC, Objectice-C e tantissimi altri). E' chiaro che ogni
paradigma di programmazione e' piu' o meno adatto ad uno scopo
piu' o meno specifico.

CLASSIFICAZIONE DEI
LINGUAGGI

LINGUAGGI IMPERATIVI

● La componente fondamentale del programma e' l'istruzione, ed
ogni istruzione indica l'operazione che deve essere eseguita. Le
singole istruzioni che operato su i dati del programma.

● Le istruzioni vengono eseguite una dopo l'altra

● Ogni programma e' costituito da due parti fondamentali la
dichiarazione dei dati e l'algoritmo inteso come sequenza di
operazioni

● Ogni istruzione e' un ordine (programmazione dichiarativa il
programma e' una serie di affermazioni)

● Di fatto da un punto di vista sintattico molti linguaggi imperativi
utilizzano appunto verbi all'imperativo (i.e. PRINT, READ, ….)

LINGUGGI IMPERATIVI

READ *, A, B

C = A + B

PRINT C

Quindi una serie di istruzioni leggi A e B, calcola C come
somma di A piu’ B ed infine stampa il risultato

PROGRAMMAZIONE
PROCEDURALE

● Possiamo considerarlo un sotto-paradigma della
programmazione imperativa.

● Viene introdotto il concetto di sotto programma
(subroutine) o funzioni.

● Quindi si introduce la possibilita' di creare porzioni di
codice sorgente utili ad eseguire funzioni specifiche.

● Questi sottoprogrammi possono ricevere parametri di input
e restituire valori di output.

PROGRAMMAZIONE
PROCEDURALE

SUB EXSUMMA (A, B, C)

 C = A + B

END SUB

FUNCTION SUM (A, B)

 C = A + B

 RETURN C

END FUNCTION

MAIN
 READ A, B
 PRINT SUM (A,B)
 EXSUM (A,B,C)
 PRINT C

Esempio di utilizzo di una subroutine e di una funzione
per il calcolo della somma (riusabilita’ del codice, librerie
di funzioni)

PROGRAMMAZIONE
STRUTTURATA
● Possiamo considerarlo un sotto-paradigma della

programmazione imperativa.

● In pratica il programmatore e' vincolato ad usare olo
strutture di controllo canoniche che non includono le
istruzioni di salto incondizionato (GOTO). Dunque la
sintassi del linguaggio impedisce l’uso di strutture che non
seguono certi vincoli. (non solo)

● L'uso dell'istruzione GOTO porta inevitabilmente ad una
scarsa leggibilita' del codice (spaghetti-code)

PROGRAMMAZIONE
STRUTTURATA

● Esempio da wikipedia

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI
● Possiamo considerarlo un sotto-paradigma della programmazione imperativa.

● Tale paradigma di programmazione permette di definire Oggetti Software in
grado di interagire gli uni con gli altri.

● L'organizzazione del software sotto forma di oggetti permette un piu' facile riuso
dello stesso. Una migliore organizzazione di progetti di grandi dimensioni.

● I Linguaggi OOP prevedono il raggruppamento di parte del codice sorgente in
classi, ogni classe comprende dati e metodi (funzioni) che operano sui dati
stessi. Le classi sono dei modelli astratti che al momento dell’esecuzione
vengono invocate per creare od istanziare oggetti software.

● Un linguaggio orientato agli oggetti permette di implementare tre meccanismi di
base utilizzando la sintassi nativa del linguaggio : incapsulamento,
polimorfismo, ereditarieta'.

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI

CLASSE QUADRATO
 ATTRIBUTI
 LATO
 COLORE
 METODI
 REAL OTTIENI_AREA()
 SET_LATO (VAL)

ESEMPIO OGGETTI

QUADRATO 1
 LATO = 1.0
 COLORE = VERDE

QUADRATO 2
 LATO = 1.5
 COLORE = GIALLO

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI
● Incapsulamento: separazione precisa fra implementazione ed interfaccia

della classe. Chi usa la classe (oggetto) non deve conoscere il dettaglio
implementativo. Utilizza la classe mediante i metodi ed i dati pubblici
interagendo con l’oggetto senza appunto consocere il dettaglio
dell’implementazione

MAIN

 TRIANGOLO T1

 T1.COLORE = GRIGIO

 T1.SET_LATO(2.0)

 PRINT T1.CALCOLA_AREA ()

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI

● Ereditarieta': una classe puo' ereditare da una classe base
ed evolverne o specializzarne le funzionalita'.

● Ad esempio posso immaginare una classe base
figura_geometriche da cui classi come trinagolo, cerchio,
quadrato … derivano.

● Le classi che derivano da una classe base ereditano tutti i
metodi e le proprieta’ della classe base, puo’ pero’
specializzarsi definendo metodi e dati propri.

● Se ad esempio B e’ una sottoclasse (oppure piu’ in generale
un sottotipo) di A, ogni programma/funzione che puo’ usare A
puo’ usare anche B

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI

● Polimorfismo: possiamo cercare di esemplificare questo
concetto dicendo: molteplici definizione della stessa
funzione (overloading), classi e funzioni parametriche
rispetto al tipo di dato. Esempio semplice overloading di
funzioni.

● Possiamo formalmente distinguere in almeno quattro tipi di
polimorfismo: per inclusione, parametrico, overloading,
coercion.

● Noi faremo solamente qualche semplice esempio utile a
chiarire il concetto generale.

PROGRAMMAZIONE ORIENTATA
AGLI OGGETTI

● Immaginiamo la solita classe figura_geometriche da cui avremo fatto
derivare due classi cerchio e triangolo

● Quando l’utente richiama il metodo calcola area questo eseguira’ una
determinata azione (calcolo dell’area nei due casi pur avendo lo stesso
nome

Figura_geometrica

CalcolaArea

Cerchio

CalcolaArea

Triangolo

CalcolaArea

PROGRAMMAZIONE
FUNZIONALE

● Come dice il nome stesso il flusso di esecuzione assume la forma di
valutazione di una serie di valutazioni di funzioni matematiche. Il
programma e' quindi un'insieme di funzioni

● Nei linguaggi funzionali puri non esiste il concetto di assegnazione, o
di allocazione esplicita della memoria.

● I valori non si trovano cambiando lo stato del programma, non esiste
appunto l'assegnazione di valore, ma costruendo il nuovo stato
mediante funzioni a partire dallo stato precedente.

● Usanti nell'ambito dell' AI (poco usanti o assenti in ambito industriale)

● Le funzioni possono essere passate come parametri e ritornate come
“risultato” da altre funzioni.

LINGUAGGI DICHIARATIVI (O
LOGICI)

● Rispetto al paradigma imperativo il programma consiste di
una serie di affermazioni e non di ordini.

● Nel programma si specifica il COSA si voglia ottenere non
il COME. Il come e' lasciato all'esecutore

● In pratica il programma (o la sua esecuzione) si puo'
considerare come la dimostrazione della verita' di
un'affermazione.

LINGUAGGI

● Si possono poi classificare i linguaggi anche secondo il tipo di
dato tipizzazione statica e tipizzazione dinamica.

● Tipizzazione statica : il programmatore e’ costretto a
specificare esplicitamente il tipo di ogni elemento sintattico Ad
esempio deve specificare il tipo di una variabile ed il linguaggio
poi garantira’ che quella variabile verra’ usata coerentemente
con la dichiarazione.

● Tipizzazione dinamica : ad esempio in questo caso i dati
assumeranno un tipo che varia a runtime in funzione di
assegnazioni fatte (vedi Python)

● Possiamo poi distinguere anche fra tipizzazione debole e forte

LINGUAGGI

● Linguaggi o paradigmi di programmazione parallela (per le
moderne architetture) se siete cuirosi potete vedere qui ad
esempio http://www.storchi.org/lecturenotes/acr/index.html

● Linguaggi esoterici : sono linguaggi voltamente complessi e
poco chiari. Popolari solo fra gli utenti piu' abili ed usati al solo
scopo di mettere alla prova le capacita' di programmazione
(scopo essenzialmente ludico)

● Scripting: nati inizialmente per essere usati nelle shell Unix.
Sono linguaggi usati per automatizzare compiti ripetitivi e
lunghi.

Programmazione altri concetti

● Il sorgente viene scritto in file di testo ASCII.Il sorgente esprime l'algoritmo
implementato nel linguaggio scelto. Per scrivere il sorgente si possono
usare semplici editor di testo (VI, Emacs). Oppure IDE ambineti di sviluppo
integrato con altri strumenti, come compilatori , linker e debugger.

● Compilazione: il sorgente viene tradotto (dal compilatore) da linguaggio
ad alto livello a codice eseguibile. Il vantaggio e' che l'esecuzione e'
“veloce” e che il codice viene ottimizzato per la piattaforma specifica. Lo
svantaggio e' che si dovra' ri-compilare per ogni diverso sistema operativo
o hardware.

● Linking: ogni programma generalmente fa uso di una o piu' librerie ed il
linker collega assieme librerie e programma di partenza. I linking puo'
essere sia statico che dinamico (ad esempio librerie .so in Linux/Unix-like
o .dll in windows)

Programmazione altri concetti

● Interpretazione: onde evitare il problema della portabilita' dei
programmi si e' ricorso al concetto di interpretate In questo
caso il codice sorgente non viene compilato “tradotto” ma
eseguito appunto da un'interprete. Questo introduce altri
problemi come quello delle prestazioni.

● Bytecode, P-code: possiamo definirlo come un approccio
intermedio in cui il programma sorgente viene “tradotto” in un
codice intermedio che viene interpretato da una macchina
virtuale. Questo permette di unire due vantaggi una buona
velocita' di esecuzione assieme ad una estrema portabilita' del
programma. JIT (Just in Time) al momento dell'esecuzione
compilano il codice intermedio in codice macchina.

Programmazione altri concetti

● Calcolabilita' : Data una funzione essa e’ detta calcolabile
se possiamo trovare un algoritmo (quindi una procedura
che esegue meccanicamente un numero finito di passi)
che la calcola.

● Tesi di Church-Turing, la classe delle funzioni calcolabili
coindicide con la classe delle funzioni calcolabili da una
macchina di Turing.

● Tutte le macchine di calcolo (computer) possono essere
ricondotte ad una macchina di Turing.

Programmazione altri concetti

● MdT: macchina di Turing

Modello deterministico con nastro e istruzioni
a 5 campi:

1 - Un nastro lungo a piacere che puo’
contenere caratteri oppure spazi vuoti
2 - testina/dispositivo di lettura e e scrittura
con cui appunto leggere e scrivere sul nastro
ed ovviamente la testina puo’ muovere il
nastro a desta o sinistra
3 - La macchina ha uno stato interno

La MdT ad ogni passo legge un simbolo ed ed in funzione del suo stato interno
puo’ cambiare stato e poi scrivere un simbolo nel nastro e poi muovere il nastro a
destra o sinitra.
Il comportamento della MdT e’ programmato definendo delle regole o quadruple
del tipo:

(stato interno, simbolo-letto, nuovo-stato, simbolo-scritto/direzione)

Programmazione altri concetti

● MdT e problema della terminazione: dato un certo
programma e dato un certo input e’ impossibile stabilire se
tale programma terminera’ o meno. (questo problema e’
fortemente legato al teorema della incompletezza di Gödel
)

Programmazione altri concetti

● Complessita’ algoritmica : e’ la misura’ della difficolta’ di un
calcolo (algoritmo + input)

● La bonta’ di un algoritmo si valuta in funzione del tempo e dello
spazio necessario alla sua esecuzione, in genrale quindi in
funzione delle risorse richieste.

● Chiaramente il tempo di esecuzione e’ funzione del tipo di input
oltre che del tipo di hardware utilizzato, non ha quindi senso
classificare gli algoritmi in funzione del numero di secondo richiesti
alla sua esecuzione.

● Il tempo di calcolo si esprime dunque come il numero di operazioni
elementari in funzione della dimensione N dei dati di input

Programmazione altri concetti

● Esempio calcolo dell’efficienza di un algoritmi in cui cerchiamo il
minimo m all’interno di un insieme di N numeri {x1, x2, …, xN}

● Immaginiamo di affrontare il problema come segue:

– Scelgo x1 come possibile minimo

– lo confronto con x2, poi x3 e cosi’ via

– Se trovo un xi piu’ piccolo continuo i confronti con quello cosi’
come fatto con x1

– Al termine avro’ trovato il minimo
● Per fare tutto avro’ fatto N confronti quindi l’efficienza dell’algoritmo

e’ direttamente proporzionale alle dimensioni N dell’input

Programmazione altri concetti

● L’efficienza di un dato algoritmo e’ quindi esprimbile come una
funzione f(N), quindi funzione della variabile N che rappresenta la
dimensione dei dati di input.

– Tale funzione esprime dunque il numero di operazioni
elementari necessarie per risolvere il problema mediante
l’algoritmo dato in funzione della dimensione dell’input

– Rappresenta quindi la complessita’ computazione

– Dato N un algoritmo A e’ piu’ efficiente di un altro B se al
crescere di N fA(N) s’ minore o uguale ad fB(N)

● Il tempo di esecuzione di un programma quindi dipende dalla
complessita’ dell’algoritmo, dalla dimensione di N ed ovviamente
dalla “ velocita’ ” della macchina sul quale e’ eseguito

Programmazione altri concetti

● Per suddividere gli algoritmi in classi di complessita’ si usa
il segunte criterio:

● Una funzione f(N) si dice che e’ di ordine g(N) e si indica
con f(N) = O(g(N)) se esiste una costante K tale che , a
meno che per un numero finito di valori di N sia sempre
vera la seguente disuguaglianza: f(N) ≤ K*g(N). Si puo’
anche scrivere f(n) / g(N) ≤ K

● Ad esempio 2*N + 5 = O(N) infatti 2*N + 5 ≤ 7*N per ogni
N maggiore di zero

Programmazione altri concetti

Classi di complessita’ P e NP , se P
sia uguale ad NP o meno ad oggi e’
un problema ancora aperto (problema
da un milione di dollari Clay Math
Institute)

Classe P problemi risolvibili in una
macchina di Turing deterministica in
tempi polinomiali.

Classe NP problemi per i quali non e’ noto un algoritmo con complessita’
polinomiale. Ma sono verificabili invece velocemente

Problemi NP-completi il modo piu’ semplice di descriverla se uno dei problemi NP-
completi e’ facile allora lo sono tutti visto che posso “convertire” la risoluzione di uno
nell’altro. Allo stesso modo se uno e’ difficile sono tutti difficili.

ESEMPIO: la fattorizzazione in numeri primi di un numero intero problema NP
(molto probabilmente non e’ NP-completo ancora non possiamo dirlo) dato c
trovare i fattori primo a e b tali che a * b = n

Programming, control structures

Loriano Storchi

loriano@storchi.org

http:://www.storchi.org/

mailto:loriano@storchi.org

FLOWCHART AND
PSEUDOCODE

FLOWCHART AND
PSEUDOCODE

● Esamineremo solo alcuni esempi di base: calcolare
l'interesse di un deposito bancario

 Step 1: Read amount,
 Step 2: Read years,
 Step 3: Read rate,
 Step 4: Calculate the interest with formula
 "Interest=Amount*Years*Rate/100
 Step 5: Print interest,

FLOWCHART AND
PSEUDOCODE

● Determina e mostra se il numero N è pari o dispari

 Step 1: Read number N,
 Step 2: Set remainder as N modulo 2,
 Step 3: If remainder is equal to 0 then
 number N is even, else number
 N is odd,
 Step 4: Print output.

FLOWCHART AND
PSEUDOCODE

● Per un dato valore, Limite, qual è il numero intero positivo
più piccolo per cui la somma Somma = 1 + 2 + ... +
Numero è maggiore di Limite. Qual è il valore di questa
somma?

1. Enter Limit
2. Set Number = 0.
3. Set Sum = 0.
4. Repeat the following:
 a. If Sum > Limit, terminate the repitition,
 otherwise.
 b. Increment Number by one.
 c. Add Number to Sum and set equal to
 Sum.
5. Print Number and Sum.

STRUTTURE DI CONTROLLO

CONTROL STRUCTURES

Sono tre le strutture fondamentali che vengono utilizzate per la risoluzione
algoritmica dei problemi: selezione, iterazioni e sequenza (sequenza di istruzioni)
(il GOTO presente nei linguaggi macchina dagli anni '70 è stato progressivamente
scoraggiato / eliminato)

Examples: https://bitbucket.org/lstorchi/teaching
 https://github.com/lstorchi/teaching

https://bitbucket.org/lstorchi/teaching
https://github.com/lstorchi/teaching

SEQUENZE

Sequences

● La struttura di controllo della sequenza si riferisce
all'esecuzione riga per riga mediante la quale le istruzioni
vengono eseguite in sequenza, nello stesso ordine in cui
appaiono nel programma. Potrebbero, ad esempio,
eseguire una serie di operazioni di lettura o scrittura,
operazioni aritmetiche o assegnazioni a variabili.

 Step 1: Read amount,
 Step 2: Read years,
 Step 3: Read rate,
 Step 4: Calculate the interest with formula
 "Interest=Amount*Years*Rate/100
 Step 5: Print interest,

SCELTE

Selections

● La struttura generale di un'istruzione di selezione è la seguente:

if (condition 1)

 statements 1

else if (condition 2)

 statements 2

...

else

 statements N

endif

Ci POSSONO ESSERE MOLTI else if

Non devono necessariamente mostrare tutti e
tre gli elementi, IF, ELSE IF e ELSE, posso
anche avere un solo IF

Selections

● Annidamento,posso ovviamente avere if..then.else annidati:

if (condition 1)

 statement 1

 if (condituion 2)

 statements 2

 end if

else

 statements 3

end if

Operators

● In tutti i linguaggi di programmazione, posso utilizzare
operatori di relazione per confrontare numeri e variabili, ad
esempio:

Int a;

a = 4 // operatori di assegnazione

If (a == 5)
{
 cout << “Hello” << std::endl;
}
else if (a > 5)
{
 cout << a << “ > 5 “ << std::endl;
}

Logical Operators

● Dò per scontati gli operatori logici AND, OR e NOT

Esempio la seguente disuguaglianza

5 < a < 7

Nei linguaggi di programmazione è
suddiviso in due espressioni
elementari collegate dall'operatore
AND:

(a > 5) AND (a < 7)

Bitwise operations

● Non confondere il precedente con le operazioni bit per bit

● Queste sono le operazioni che servono per manipolare dati bit per
bit, da non confondere con quanto visto nella diapositiva
precedente

– & (AND)
– | (OR)
– ^ (XOR I.e. 1 XOR 1 is zero)
– ~ (ones' complement i.e. 0 to 1 and 1 to 0)
– >> (right shift 11100101 >> 1 is 01110010)
– << (left shift)

Bitwise operations

● Un semplice esempio:

Case structure

● Fondamentalmente una serie di if-then-else con qualche vincolo. In pratica,
la scelta tra i blocchi di istruzione è guidata dal valore di una certa variabile:

switch variable:

 case val1:

 statements 1

 case val2:

 statements 2

 …

 default:

 default statements

If (variable == val1)
{
 Statements 1
}
else if (variables == val2)
{
 Statements 2
}
…
else
{
 Default statements
}

Example

 int i;

 i = 4;

 switch (i)

 {

 case 1:

 printf("vale uno \n");

 break;

 case 2:

 printf("vale due \n");

 break;

 default:

 printf("non uno non due\n");

 break;

 }

LOOPS

Loops

● Ci sono tre diversi tipi: while..do, do.. while e for

● Non tutti I linguaggi hanno necessariamente tutte e tre
queste strutture

● Queste strutture consentono di ripetere un blocco di
istruzioni finché non si verifica una condizione

● Anche in questo caso è possibile annidare più loop uno
dentro l'altro

While..do e Do..while

● Il blocco di istruzioni inoltre non può mai essere eseguito, poiché la
condizione è verificata all'inizio, finché la condizione è vera, il blocco di
istruzioni viene eseguito

WHILE (condition)

 statements

END DO

● do..while esegue invece il blocco di istruzioni finché la condizione non è
falsa

DO

 statements

WHILE (condition)

Example

● A simple C example:

int i = 0, N = 10;

while (i != N)

{

 printf("%d \n", i);

 i++;

}

Example

Example

Int i = 0, N = 10;

do

{

 printf (“%d \n”, i);

 i++; // i = i + 1

} while (i >= N);

For loop

● Esegue un blocco di istruzioni un numero di volte noto
dall'inizio. Molti linguaggi di programmazione costringono il
programmatore a utilizzare un contatore.

● Generalmente esiste un contatore che è una variabile intera il
cui valore viene "modificato" passo dopo passo

● La condizione finale viene generalmente determinata
confrontando la variabile contatore con un valore

for (counter = startingvalue A endvalue STEP = stepvalue)

 statements

end for

Example

int i;

for (i=0; i<10; ++i)

{

 printf (“%d \n”, i);

}

Example

for i in range(10):

 print(i)

ARRAY

Array

● Come posso gestire facilmente le informazioni strutturate per
natura? Ad esempio un numero complesso, o un vettore o
una matrice?

● Le variabili strutturate tipiche sono gli array

● Ad esempio, un vettore di numeri in virgola mobile in C può
essere dichiarato come: float v [10];

● Possiamo quindi accedere all'elemento i-esimo del vettore: v
[i-1] = 3.5;

● Allo stesso modo posso definire una matrice (array
bidimensionale) come: float m [10] [10];

Array

Example

● Loop di esempio per eseguire una moltiplicazione scalare tra i vettori

float a[N], b[N];

for (i=0; i<N; ++i)

{

 a[i] = (float)rand()/(float)(RAND_MAX/N);

 b[i] = (float)rand()/(float)(RAND_MAX/N);

}

s = 0.0;

for (i=0; i<N; ++i)

{

 s = s + a[i]*b[i];

}

Example

Programming, control structures

Loriano Storchi

loriano@storchi.org

http:://www.storchi.org/

mailto:loriano@storchi.org

YOU CAN TRY USING SCRATCH

Scratch

● Scratch is a block-based visual programming
language and online community targeted primarily at
children.

Scratch

Python

Loriano Storchi

loriano@storchi.org

http:://www.storchi.org/

mailto:loriano@storchi.org

Programming Laguanges

● Abbiamo visto che i linguaggi di programmazione possono
essere classificati come (non solo ma ...):

– Dichiarativo
● Logica
● Funzionale

– Imperativo
● Procedurale
● Orientato agli oggetti

● Python è imperativo e sia procedurale che orientato agli oggetti

Programming languages

● Possiamo classificare i linguaggi di programmazione
anche come tipizzazione dinamica o statica e tipizzazione
forte e debole

● Tipizzazione debole e dinamica, esempio utilizzando Perl:

● Python dynamic and strong typing

the Python interpreter

● Molto materiale / documentazione disponibile (infatti,
questa introduzione è fortemente basata su:

– http://tdc-www.harvard.edu/Python.pdf
● Python può essere trovato pronto per l'uso sia su Linux

che su Mac OS X. Per Windows potete trovare facilmente i
binari al seguente URL: http://python.org/

● Molti moduli (librerie) disponibili, nel nostro caso alcuni utili
/ interessanti: numpy, matplotlib e pystat

● python 2.x vs python 3.x, useremo python 3.x la versione
2.x è stata ora ignorata.

the Python interpreter

To exit press CTRL-D or
type exit()

the Python interpreter

Possiamo semplicemente scrivere il sorgente usando un banale editor ASCII

$ python file.py

the Python interpreter
Usare un IDE: File → PyDev Project

the Python interpreter
Click su Project e poi con il pulsante destro New → File

the Python interpreter
Click Run As

the Python interpreter
Click Run As

Or Jupyter
 Applicazione web in cui puoi creare e condividere

documenti che contengono codice live, equazioni,
visualizzazioni e testo, Jupyter Notebook è uno degli
strumenti ideali

Or Jupyter

Or Colab

Let’s start

Or Colab

HELLO WORLD!

Hello world

● Il classico programma utilizzato per illustrare le basi
sintattiche di qualsiasi linguaggio di programmazione

HELLO WORLD 2

Hello world

Hello world

PYTHON BASICS

Python Basics

● Vediamo un semplice codice che ci permette di illustrare
alcune delle caratteristiche di base della sintassi di Python:

– Posso aggiungere commenti usando il carattere #
– = viene utilizzato per assegnare valori alle variabili
– Per fare operazioni tra numeri e variabili posso usare i

soliti operatori +, -, *, /

Python Basics

– == è l'operatore che serve a confrontare i valori
– Gli operatori logici sono invece: and, or, not
– L'operatore + può essere utilizzato anche per

concatenare le stringhe

Python Basics

– print è il comando di base utilizzato per stampare a
schermo

– Le variabili non devono essere dichiarate
esplicitamente la prima volta che assegno un valore
alla variabile viene creata e gli viene assegnato un
tipo

Python Basics

Python Basics

● Non ci sono caratteri di fine riga, se una riga di codice
deve essere interrotta su più righe, usa \

● Python 2 Per impostazione predefinita i numeri sono interi,
quindi z = 5/2 darà come risultato 2

IF … THEN … ELSE

If … then … else

INSERT NUMBER I

IF I LOWER THEN 0

 PRINT “il numero è minore di zero”

ELSE IF I EQUAL TO 0

 PRINT “Il numero è uguale a zero”

ELSE

 PRINT “Il numero è maggiore di zero”

ENDIF

If … then … else

● Per identificare i blocchi di codice in Python, vengono
utilizzati spazi vuoti, non ad esempio {} come in C / C ++

If … then … else

● Oppure puoi usare eval()

LOOPS

Loops

SET N TO 0

SET n TO 0

Repeat the following:
 a. If n >= 10, terminate the repetition,
 otherwise.
 b. Increment N by n
 c. PRINT n

PRINT N

Loops

● Per identificare i blocchi di codice in Python, vengono
utilizzati spazi vuoti, non ad esempio {} come in C / C ++

● Python e’ case sensitive

Loops

EXAMPLE

Example of a numerical procedure

● È possibile trovare un algoritmo per risolvere quasi tutti i problemi, ma non
tutti. Ad esempio, calcola le soluzioni di un'equazione del secondo ordine:

INPUT A, B, C

COMPUTE D = (B*B)-(4 * A * C)

IF D >= 0.0

 SOL1 = (-1,0 * B + SQRT(D)) / (2,0 * A)

 SOL2 = (-1,0 * B - SQRT(D)) / (2,0 * A)

 PRINT SOL1 AND SOL2

ELSE

 PRINT “non ci sono soluzioni reali”

Example of a numerical procedure

Example of a numerical procedure

ESERCIZIO 1

EXERCISE 1

● Scrivi un programma in Python che legga 10 numeri, dopo
aver calcolato il valore medio e stampato il risultato

BREAK

Break

● L'interruzione solitamente nidificata sintatticamente in un
ciclo for o while, termina il ciclo più vicino, saltando la
clausola else opzionale se il ciclo ne ha una.

Break and nested loops

Break and nested loops

RANDOM NUMBER

Random Number

● https://docs.python.org/2/library/random.html

– Pseudo Random vs Random
– cat /dev/urandom
– cat /dev/urandom | od -vAn -N2 -tu
– cat /dev/random
– cat /dev/random | od -vAn -N2 -tu

https://docs.python.org/2/library/random.html

Random Number

● https://docs.python.org/2/library/random.html

– random.randint(a, b) genera un numero intero random
N nell’intevallo a <= N <= b

https://docs.python.org/2/library/random.html

Random Number

ESERCIZIO 2

Exercise 2

● Scrivi un programma che generi un numero casuale R
compreso tra 0 e 20 e chieda all'utente di indovinare il numero
con un massimo di 10 tentativi. Ogni volta che il programma
scriverà semplicemente se il numero inserito è maggiore o
minore di R. Chiaramente se il numero inserito è uguale al
numero casuale R generato il programma termina

Pseudocode

GENERATE A RANDOM NUMBER rnd

Repeat the following:
 INPUT b
 IF b IS EQUAL TO rnd

 PRINT “well done”

 BREAK

ELSE IF b < rnd

PRINT “inserted number is too small”

ELSE

PRINT “inserted number is too big”

 ENDIF

Python (strutture dati)

Loriano Storchi

loriano@storchi.org

http:://www.storchi.org/

mailto:loriano@storchi.org

I numeri complessi

● I numeri complessi sono intrinsecamente definiti ed usabili
in python

Strutture dati

● Le strutture dati permettono di organizzare i dati in modo
da rendere il loro uso e la loro manipolazione piu' efficiente

● Vedremo in particolare le stringhe, le liste, le tuple, i
dizionari ed i set.

● Noi vedremo solo le basi minime di uso utili allo
svolgimento di esercizi base

Le stringhe

● Una stringa e' una sequenza di caratteri, in python ci sono
diversi metodi/operazioni utili alla manipolazione delle
stringhe, una stringa in generale puo' essere vista come
un array di caratteri

Le stringhe

● Come detto la classe in questione ha diversi metodi
vediamo solo alcuni

Liste

● Le liste sono sequenze ordinate di oggetti, molte
operazioni di base sono in comune con le stringhe

Liste

● La lista ha molti metodi utili vediamone alcuni

Tuples

● Le tuples in python sono molti simili alle liste solo che la
loro manipolazione e' piu' rapida visto che sono
“immutabili”

Piccola precisazione

Dizionari

● Un dizionario e' una sequenza di elementi , ogni elemento
a' una coppia chiave, valore. Le chiavi sono uniche ed i
dizionari si creano usando le parentesi graffe

Dizionari

Dizionari

Reference

● Quando dichiaro una variabile sto chiedendo una certa
quantita' di spazio in memoria

● In python l'operazione di assegnamento manipola i
riferimenti , quindi x = y non crea una copia dei dati
contenuti in y in x, ma crea un riferimento a y, x punta ad y

Quando scrivo x = 4
viene allocato lo
spazio in memoria
necessario a
contenere l'intero 4 e
poi viene
“memorizzato
l'indirizzo della” (creato
il riferimento alla)
locazione di memoria
in x

Reference

● Cosa succede veramente quando incremento x ?

– L'interprete recupera il valore contenuto nell'indirizzo di
memoria a cui x fa riferimento

– Viene calcolato il risultato dell'operazione 3 + 1 ed il risultato
viene memorizzato in una nuova locazione di memoria

– Si cambia il riferimento in x, x adesso fara' riferimento al
nuovo indirizzo in memoria dove e' memorizzato il valore 4

– Python ha un garbage collector che elimina libera tutta la
memoria allocata quando non ci sono piu' nomi che fanno
riferimento alle zone di memoria in questione

VETTORI

Vettori

● I vettori sono estremamente utili in fisica. La caratteristica
principale di un vettore è che ha sia una grandezza (o una
dimensione) che una direzione.

● Un esempio di una grandezza vettoriale è velocità. Questa
è la velocità, in una particolare direzione.

Vettori

● I vettori sono estremamente utili in fisica. La caratteristica
principale di un vettore è che ha sia una grandezza (o una
dimensione) che una direzione.

● Un esempio di una grandezza vettoriale è velocità. Questa
è la velocità, in una particolare direzione.

Vettori

● I vettori sono estremamente utili in fisica. La caratteristica
principale di un vettore è che ha sia una grandezza (o una
dimensione) che una direzione.

● Un esempio di una grandezza vettoriale è velocità. Questa
è la velocità, in una particolare direzione.

Vettori

● TODO come rappresento un vettore ? Vedi una lista e poi
magari rappresenta anche con matplotlib poi somman
sottrazione prodotto scalare e vettoriale

●

MATRICI

Una matrice

● Posso usare una lista di liste per memorizzare una matrice
in modo semplice

Moltiplicazione matrice matrice

Il prodotto e' definito solo
per matrici con dimensioni
compatibili

Moltiplicazione matrice matrice

Esercizio

● Scrivere un programma che date due matrici 3x3 riempite
con numeri random calcoli e stampi il risultato del prodotto
matrice matrice

ESERCIZI ED ESEMPI

Calcolo PI con metodo MC

Esercizio

● Calcolo di integrale con metodo MC:

∫
2

5

sin(x)dx=cos(2)−cos(5)=−0,69981

Vediamo un
primo
esempio di
uso di numpy
e matplotlib

