CHIMICA MODULO 2

14 Giugno 2024

COGNOME	NOME							
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. A Alle domande a cui non si risponde verrà assegnato un punteggio nullo.								
$1-A$ 298 K tra i composti solidi A e B si instaura il seguente equilibrio: $A(s) + B(s) \Longrightarrow 2C(g)$ Ad equilibrio raggiunto, la pressione esercitata da C è pari a 0,12 atm. Determinare il ΔG° associato alla reazione.	□ D - 194,7 g 4 − L'ammoniaca è una base debole con K _b =1,8×1 Calcolare il pH di una soluzione ottenuta sciogliendo acqua 25,5 g di ammoniaca e 21,4 g di cloruro ammonio.							
□ A - 10506 J	□ A - 10,4							
□ B - 3568 J	□ B - 9,83							
□ C - 5253 J	□ C - 8,14							
□ D - i dati non sono sufficienti	□ D - 8,42							
2 – Bilanciare la seguente reazione in ambiente acido: a I + b MnO₄ → c I₂+ d Mn²+ Quali sono i coefficienti a,b,c,d? □ A - a=10, b=2, c=5, d=2 □ B - a=5, b=2, c=5, d=2 □ C - a=5, b=1, c=5, d=1 □ D - a=10, b=1, c=5, d=1 3 – Calcolare quanti grammi di glucosio, C ₆ H ₁₂ O ₆ , si devono sciogliere in 750 g di acqua per aumentarne la temperatura di ebollizione a 101,0°C. (La costante	5 – Una soluzione satura di fluoruro di zinco presenta una concentrazione di ioni F⁻ pari a 2,3×10⁻² M. S calcoli il Kps del fluoruro di zinco. □ A - 6,1×10⁻⁶ □ B - 5,0×10⁻⁶ □ C - 3,7×10⁻⁶ □ D - 4,0×10⁻¹¹ 6 – Dall'elettrolisi di cloruro di zinco fuso si ottengono: □ A - ioni Zn²⁺(l) e ioni Cl⁻(l)							
ebullioscopica dell'acqua è Keb=0,52)	\Box B - ioni H ⁺ (l) e ioni Cl ⁻ (l)							
□ A - 129,8 g	\Box C - Z n(s) e Cl ₂ (g)							
□ B - 64,9 g	\square D- ioni Zn ⁺ (l) e ioni Cl ₂ ⁻ (l)							
□ C - 259,6 g								

Costanti utili

Numero di Avogadro, N = $6,022\times1023$; Costante dei gas, R = 0,0821 L atm moli-1 K-1 = 8,314 J moli-1 K-1; Costante di Rydberg= $2,180\times10$ -18 J Velocità della luce c= $3,00\times108$ m/s Costante di Planck h= $6,63\times10$ -34 J·s Costante di Faraday, F=96500 C/mol

IA IIA

IIIA IVA VA VIA VIIA

H 1,008																He 4,00	
Li	Ве											В	С	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93		63,55	65,39					79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
85,47										107,9			118,7			126,9	131,

1 - Quanto vale il pH al punto di semiequivalenza per la titolazione di una soluzione di ammoniaca con acido cloridrico (Kb ammoniaca = 1.8×10^{-5})? Disegnare la curva di titolazione indicando il punto di semiequivalenza e giustificando la risposta data mediante le reazioni acido-base coinvolte (4 punti)

\

2 - Immergendo una barretta di Zinco metallico in una soluzione di ioni Cu^{2+} che reazione si osserva ? Giustificare la risposta data e riportare le reazioni coinvolte correttamente bilanciate $[E^0(Zn^{2+}/Zn) = -0.76 \text{ V}, E^\circ(Cu^{2+}/Cu) = 0.34 \text{ V}]$ (3 punti)

3 - Riportare il nome della struttura in figura e disegnare la struttura di Kekulè equivalente indicando l'ibridazione degli atomi di C. Si tratta di: alcano, alchene o alchino ? (4 punti)

4 - La capacità termica molare a volume costante (Cv) del neon (Ne gas monoatomico) vale $12.47~J~K^{\text{--}1}$ mol $^{\text{--}1}$ mentre quella dell'azoto molecolare ($N_2\,$ gas biatomico) vale $20.81~J~K^{\text{--}1}$ mol $^{\text{--}1}$, come possiamo giustificare questo aumento di Cv passando da un gas monoatomico ad uno biatomico ? (3 punti)