

Le Soluzioni

- Una soluzione è una miscela omogenea (=la sua composizione e le sue proprietà sono uniformi in ogni parte del campione) di due o più sostanze formate da ioni o molecole.
- Differenza con i colloidi che differiscono in quanto le particelle sono più H
 grandi delle molecole normali ma non ancora visibili al microscopio
 (10-2000 Å).

Le soluzioni possono esistere in ognuno dei tre stati della materia: **gas, liquido o solido**.

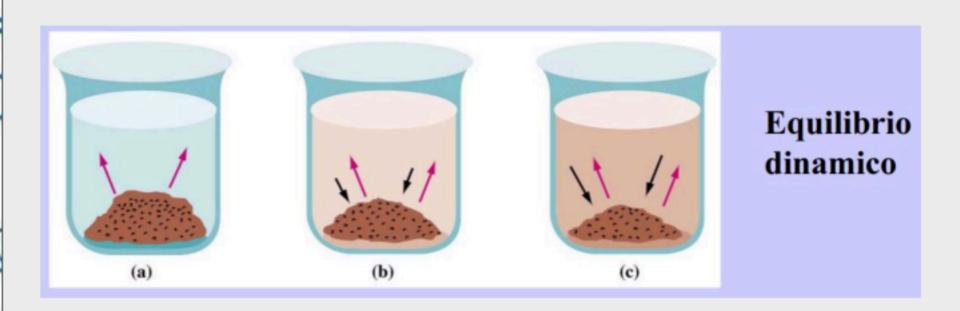
- Il solvente è il componente presente in quantità maggiore o che determina lo stato della materia in cui la soluzione esiste.
- Il soluto è un componente presente in quantità minore.

21

Naci

Le Soluzioni

Il caso più comune è quello di soluzioni liquide (soluzioni di gas, solidi o liquidi sciolti in un liquido). Si possono però avere:


- Soluzioni gassose: in genere i gas possono mescolarsi in tutte le proporzioni per dare soluzioni gassose.
- Soluzioni liquide: sono le più comuni e sono ottenute nella maggior parte dei
 casi sciogliendo un gas o un solido in un liquido. Sono comuni anche le
 soluzioni liquido-liquido (possono non essere miscibili in tutte le proporzioni).
- Soluzioni solide: sono principalmente leghe di due o più metalli. Le leghe di mercurio (l'unico metallo liquido) con altri metalli sono chiamate amalgame e possono essere sia liquide che solide).

25

Nacl

Solubilità

In generale solo una quantità finita di un solido si scioglie in un dato volume di solvente dando luogo ad una soluzione satura, cioè una soluzione in equilibrio con un eventuale solido in eccesso. (**EQUILIBRIO DINAMICO**)

La concentrazione del soluto nella soluzione satura è detta **solubilità**. Ad esempio la solubilità di NaCl in acqua è di 36 g per 100 ml di acqua a 20°C.

Chlorine

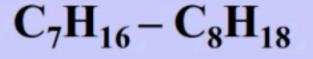
Naci

Solubilità

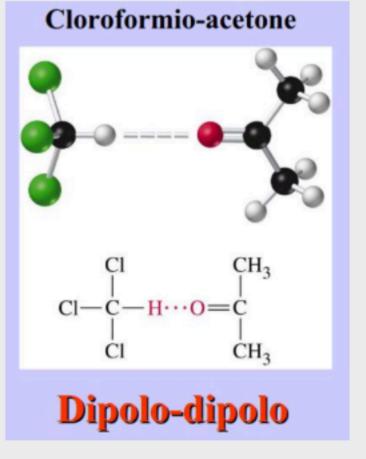
La solubilità di una sostanza in un'altra può essere spiegata sulla base di due fattori:

- Una naturale tendenza al disordine (fattore entropico). E' praticamente l'unico fattore ad agire nel caso dei gas (ideali) che sono miscibili in tutte le proporzioni.
- 2. Forze intermolecolari di attrazione tra le molecole delle due sostanze (fattore energetico). Chiamando A le molecole di una sostanze e B quelle dell'altra, se la media delle attrazioni A-A e B-B è superiore all'attrazione A-B le due sostanze non tendono a mescolarsi.

La solubilità di un soluto in un solvente dipende da un bilancio fra questi due fattori.

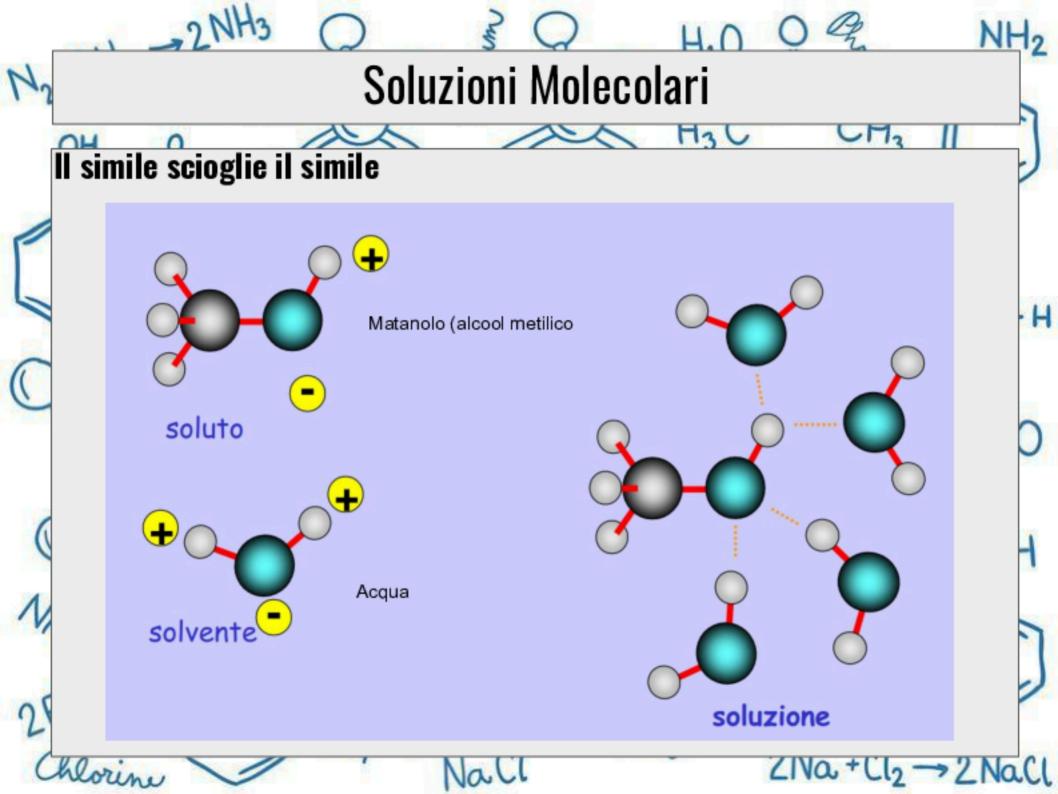

Chlorine

Naci

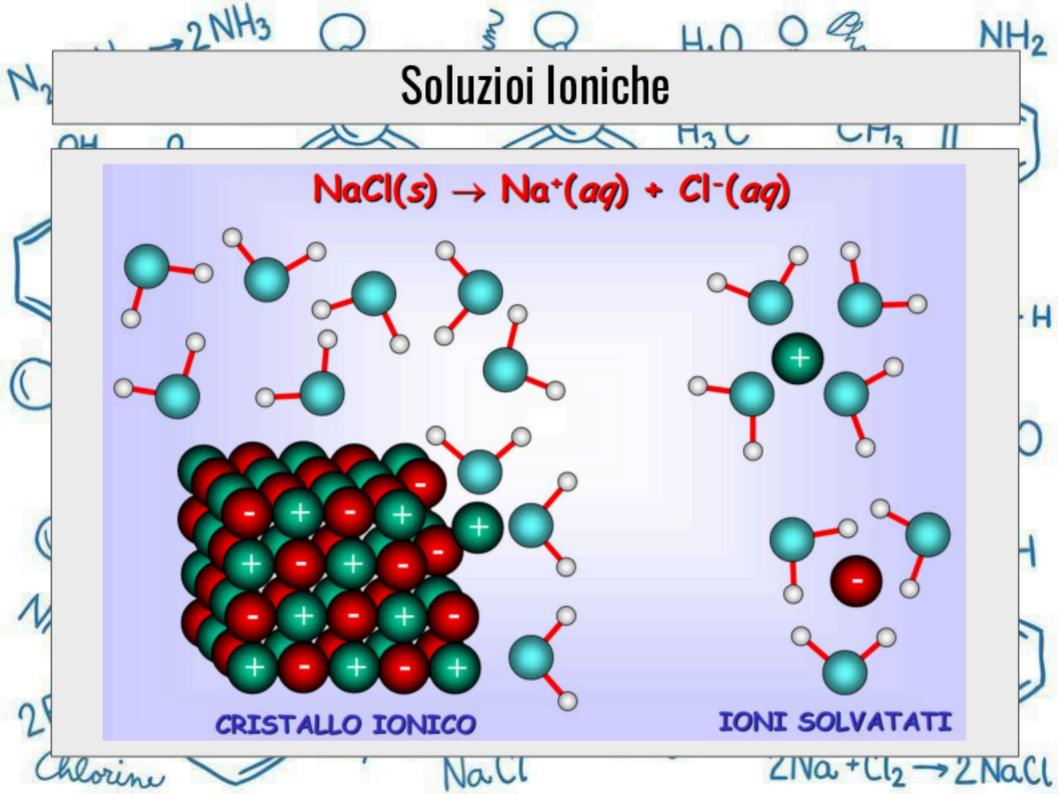

ZNa+Cl2 -> 2 NaC

Soluzioni Molecolari

In questi casi il soluto (solido o liquido) è costituito da molecole tenute assieme da forze intermolecolari deboli. Nel caso di liquidi essi sono solubili se sono tenuti assieme da forze intermolecolari simili. (**Il simile scioglie il simile)**.



Forze di London



Chlorine

Nacl

Soluzioi Ioniche In questo caso il soluto è un solido ionico tenuto assieme da forti legami ionicie può sciogliersi solo in solventi polari. I fattori che determinano la dissoluzione di un solido ionico in un solvente polare sono due: l'energia reticolare del solido (somma delle energie di attrazione fra anioni e cationi): più è grande e minore è la tendenza del solido a sciogliersi l'energia di attrazione ione-dipolo fra gli ioni e i dipoli elettrici costituiti dalle molecole di solvente opportuna-mente orientati: più è grande maggiore èla tendenza del solido a sciogliersi

Soluzioi Ioniche detto Tale fenomeno idratazionee l'energia elettrostatica di interazione di uno ione con le molecole di acqua è detta **energia di idratazione**. • La solubilità di un ionico in acqua dipende da un bilancio fra energia reticolare ed energia idratazione. IONI SOLVATATI ZNa+Cl2 -> 2 NaCl

Soluzioni Ioniche

Maggiore è l'energia reticolare di un composto ionico e minore èla sua solubilità e viceversa. **L'energia reticolare dipende sia dalle cariche degli ioniche** dalla loro distanza:

- maggiore è la carica dello ione e maggiore è l'energia reticolare
- maggiore è la distanza fra gli ioni (più grandi sono gli ioni) e minore è l'energia reticolare

La situazione è complicata dal fatto che l'energia di idratazione è più per soni di carica elevata e di dimensioni piccole. In genere l'energia reticolare prevale per cui è possibile prevedere che:

- solidi formati da ioni con una sola carica specie se di grandi dimensioni (K⁺, NH_A⁺) sono in genere solubili
- solidi formati da ioni con due o tre cariche specie se dipiccole dimensioni (S²⁻ PO_A³⁻) sono in genere insolubili.

Chlorine

Nacl

ZNa+Cl2 -> 2 NaC

Entalpia di Soluzione

Per il processo di soluzione di un solido in un liquido è possibile definire un calore o entalpia di soluzione, ∆H_{sol} che è sostanzialmente uguale all'energia di solvatazione (negativa) più l'energia reticolare (positiva):

∆H_{sol}= energia di solvatazione + energia reticolare

Se prevale l'energia di solvatazione il processo di soluzione è esotermico ΔH_{sol}< O mentre se prevale l'energia reticolare il processo è endoternico, ΔH_{sol}> O.

Solidi con $\triangle H_{sol}$ <0 sono molto solubili ma anche solidi con $\triangle H_{sol}$ >0 sono spesso solubili (purchè il $\triangle H_{sol}$ non sia troppo grande) per effetto della tendenza al disordine. Di fatto, la maggior parte dei solidi ionici solubili ha $\triangle H_{sol}$ piccolo e positivo.

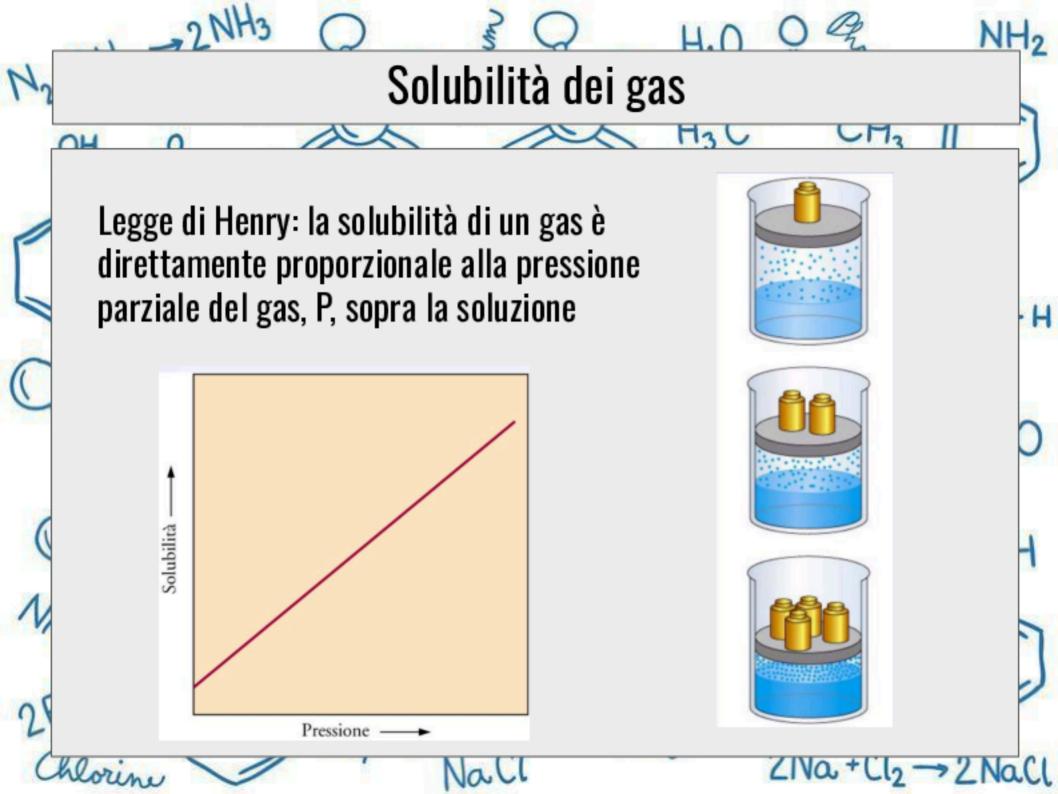
hlorine

Naci

ZNa+Cl2 -> 2 NaC

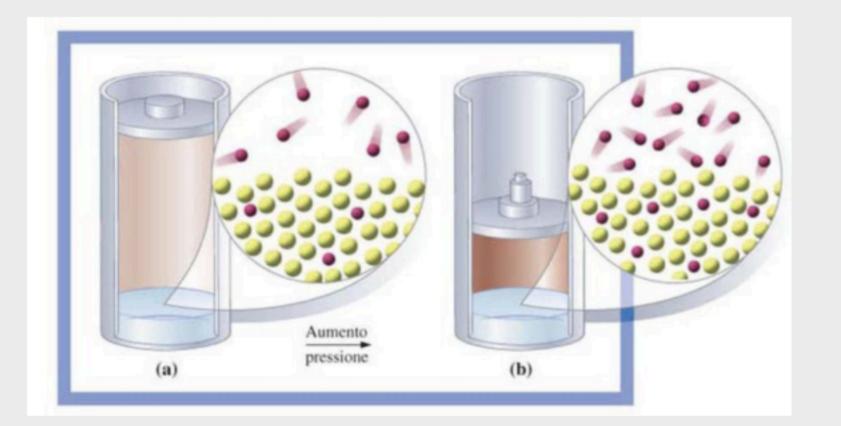
Entalpia di Soluzione - Solubilità in funzione di T La solubilitàdi un solido ionico aumenta con T se ∆Hsol >0 mentre diminuisce se $\Delta H_{sol} < 0$ (Principio di Le Chatelier) 50 -Li,SO, NH₄CI 20 -KNO. 10 -K2SO4 KC1O4 Temperature, °C

Solubilità dei gas


La pressione ha poco effetto sulla solubilità di solidi e di liquidi. E' invece importante per la solubilità dei gas.

La solubilità di un gas in un liquido dipende dalla pressione parziale del gas H secondo la legge di Henry. La solubilità di un gas è direttamente proporzionale alla pressione parziale del gas, P, sopra la soluzione

La solubilità **s** è generalmente espressa in grammi di soluto per litro di soluzione e **k**, è una costante.


2

Naci

Solubilità dei gas

Interpretazione molecolare: maggiore è la pressione parziale del gas e maggiore è il numero di molecole di gas che urtano la superficie e passano in soluzione

2 NH3

§ Q

NH

H

Solubilità dei gas

Esempio: 27 g di acetilene si sciolgono in un litro di acetone ad 1 atm. Quanti grammi si sciolgono a 12 atm?

$$P_1 = 1$$
 atm

$$s_1 = k_H P_1$$

$$P_2 = 12$$
 atm

$$s_2 = k_H P_2$$

Dividendo la seconda equazione per la prima:

$$\frac{\mathbf{s_2}}{\mathbf{s_1}} = \frac{\mathbf{K_H} \mathbf{P_2}}{\mathbf{K_H} \mathbf{P_1}}$$

$$\frac{\mathbf{s_2}}{\mathbf{s_1}} = \frac{\mathbf{P_2}}{\mathbf{P_1}}$$

A P_1 = 1 atm si ha s_1 = 27 g/1 litro = 27 g/l. Dalla relazione sopra si ha:

$$\frac{s_2}{27g/l} = \frac{12 \text{ atm}}{1 \text{ atm}} \Rightarrow s_2 = 12 \times 27 \text{ g/l} = 324 \text{ g/l}$$

Quindi a 12 atm 1 litro di acetone scioglie 324 g di acetilene

2

\a(

CONCENTRAZIONE DELLE SOLUZIONI

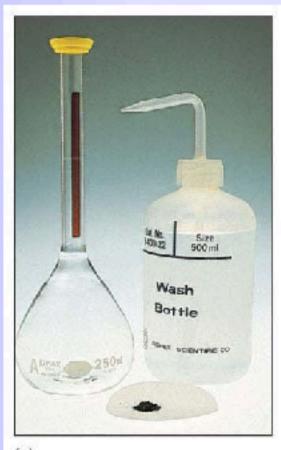
In generale la concentrazione di una soluzione è una misura della quantità di soluto presente in una data quantità di solvente (o di soluzione).

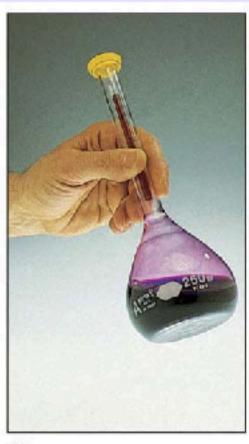
La quantità di soluto o di solvente possono essere espresse in numero di moli, massa o volume per cui vi sono diversi modi di esprimere la concentrazione di una soluzione:

- · Molarità
- Percentuale in massa (peso)
- Molalità
- ·Frazione molare

<u>Molarità</u>

E' il numero di moli di soluto presenti in un litro di soluzione:


$$Molarità = \frac{moli di soluto}{litri di soluzione}$$


Le unità sono mol/litro ma sono generalmente indicate con M.

Ad esempio una soluzione ottenuta sciogliendo 0,20 moli di NaCl in acqua sino ad un volume di 2,0 l ha molarità:

$$\frac{0,20 \text{ moli}}{2,0 \text{ litri}} = 0,10 \text{ mol/l} = 0,10 \text{ M}$$

Preparazione in laboratorio di una soluzione 0,01M di di K2MnO4 0,0025 moli (0,395 g) in 250 ml di acqua

(a)

(h)

(c)

Percentuale in massa di soluto

E' definita come:

$$%$$
 massa di soluto = $\frac{\text{massa di soluto}}{\text{massa della soluzione}} \times 100$

massa della soluzione = massa di soluto + massa di solvente

Ad esempio per una soluzione ottenuta mescolando 3,5 g di NaCl e 96,5 g di acqua si ha:

% massa NaCl =
$$\frac{3.5 \text{ g}}{3.5 \text{ g} + 96.5 \text{ g}} \times 100 = 3.5 \%$$

Tale soluzione contiene 3,5 g di NaCl per 100 g di soluzione

<u>Molalità</u>

E' il numero di moli di soluto per chilo di solvente:

$$molalità = \frac{moli di soluto}{Kg di solvente}$$

Le unità sono mol/Kg ma sono generalmente indicate con m.

Ad esempio una soluzione ottenuta sciogliendo 0,20 moli di NaCl in 2000 g di acqua ha molalità:

$$\frac{0,20 \text{ moli}}{2,0 \text{ Kg}} = 0,10 \text{ mol/Kg} = 0,10 \text{ m}$$

Esempio: Calcolare la molalità di una soluzione ottenuta sciogliendo 5,67 g di glucosio ($C_6H_{12}O_6$) in 25,2 g di acqua

$$n_{glucosio} = \frac{5,67 \text{ g}}{180,2 \text{ g/mol}} = 0,0315 \text{ mol}_{glucosio}$$

molalità =
$$\frac{0,0315 \text{ mol}}{25,2 \times 10^{-3} \text{ Kg}} = 1,25 \text{ m}$$

Frazione molare

Per una soluzione fra due componenti A e B la frazione molare di A è definita:

$$x_A = \frac{\text{moli di A}}{\text{moli totali soluzione}} = \frac{\text{moli di A}}{\text{moli di A} + \text{moli di B}}$$

Ad esempio in una soluzione ottenuta sciogliendo 0,0315 moli di glucosio in 25,2 g di acqua la frazione molare del glucosio è:

$$n_{_{\rm H_2O}} = \frac{25,2~\text{g}}{18,0~\text{g/mol}} = 1,40~\text{mol}_{_{\rm H_2O}} \qquad x_{_{\rm glucosio}} = \frac{0,0315}{0,0315+1,40} = 0,022$$

$$x_{H_2O} = \frac{1,40}{0,0315 + 1,40} = 0,978$$
 $x_{H_2O} + x_{glucosio} = 1$

Conversione fra unità di concentrazione

Conviene far riferimento ad una certa quantità di solvente o di soluzione, determinare le quantità di soluto e di solvente corrispondenti e riutilizzarle per il calcolo della nuova concentrazione.

Le quantità di riferimento per le concentrazioni da convertire sono:

Molalità Molarità Frazione molare % massa 1 Kg di solvente 1 litro di soluzione 1 mole di soluzione 100 g di soluzione

Quando è implicata la molarità è necessario conoscere la densità della soluzione (mette in relazione massa e volume).

Molalità --- Frazione molare

Una soluzione di glucosio è 0,120 m. Calcolare le frazioni molari di glucosio e acqua.

Tale soluzione contiene 0,120 moli di glucosio per 1 Kg di solvente (acqua). Si ha quindi:

$$\begin{aligned} & moli_{glucosio} = 0,120 \\ & moli_{H_2O} = \frac{1000 \text{ g}}{18 \text{ g/mol}} = 55,6 \text{ mol} \\ & x_{glucosio} = \frac{0,120}{0,120 + 55,6} = 0,00215 \\ & x_{H_2O} = \frac{55,6}{0,120 + 55,6} = 0,998 \end{aligned}$$

Molalità --- % massa

Calcolare la % in massa di una soluzione di glucosio 0,120 m.

Tale soluzione contiene 0,120 moli di glucosio per 1 Kg di solvente (acqua). Si ha quindi:

$$massa_{glucosio} = 0,120 \ mol \times 180,2 \ g/mol = 21,6 \ g$$

$$massa_{H,O} = 1000 \ g$$

% massa_{glucosio} =
$$\frac{21,6}{1000 + 21,6} \times 100 = 2,11\%$$

Frazione molare --- Molalità

Calcolare la molalità di una soluzione acquosa di glucosio la cui frazione molare è 0,150.

1 mole di tale soluzione contiene 0,150 moli di glucosio e (1 - 0,150) = 0,850 moli di acqua. Si ha quindi:

$$massa_{H,O} = 0.850 \, mol \times 18 \, g/mol = 15.3 \, g$$

molalità_{glucosio} =
$$\frac{0,150 \text{ mol}}{15,3 \times 10^{-3} \text{ Kg}} = 9,8 \text{ m}$$

Frazione molare --- % massa

Calcolare la % in massa di una soluzione acquosa di glucosio la cui frazione molare è 0,150.

1 mole di tale soluzione contiene 0,150 moli di glucosio e (1 - 0,150) = 0,850 moli di acqua. Si ha quindi:

$$massa_{glucosio} = 0,150 \text{ mol} \times 180,2 \text{ g/mol} = 27,0 \text{ g}$$

 $massa_{H_2O} = 0,850 \text{ mol} \times 18 \text{ g/mol} = 15,3 \text{ g}$

% massa_{glucosio} =
$$\frac{27,0 \text{ g}}{27,0 \text{ g} + 15,3 \text{ g}} \times 100 = 63,8 \%$$

Molalità --- Molarità

Calcolare la molarità di una soluzione 0,273 m di KCl in acqua, avente densità 1,011×10³ g/l.

Per 1 Kg di solvente vi sono 0,273 moli di KCl e quindi:

$$massa_{KC1} = 0,273 \text{ mol} \times 74,6 \text{ g/mol} = 20,4 \text{ g}$$

La massa totale di soluzione è:

$$massa_{tot} = massa_{KCl} + massa_{H_2O} = 1000 \text{ g} + 20,4 \text{ g mol} = 1020 \text{ g} = 1,02 \times 10^3 \text{ g}$$

Nell'espressione per il calcolo della molarità c'è però il volume in litri della soluzione, calcolabile tramite la densità:

$$d = \frac{massa}{volume}$$

volume =
$$\frac{\text{massa}}{\text{d}} = \frac{1,02 \times 10^3 \,\text{g}}{1,011 \times 10^3 \,\text{g/l}} = 1,009 \,\text{l}$$

$$molarit\grave{a} = \frac{0,273\ mol}{1,009\ l} = 0,271\ M$$

Si noti che per soluzioni diluite molarità ≅ molalità

Molarità --- Molalità

Calcolare la molalità di una soluzione 0,907 M di $Pb(NO_3)_2$ in acqua, avente densità 1,252 g/ml.

Per 1 litro di soluzione vi sono 0,907 moli di Pb(NO₃)₂. La massa di un litro di soluzione è:

$$massa_{soluzione} = volume \times d = 1,000 \times 10^{3} \, ml \times 1,252 \, g/ml = 1252 \, g$$

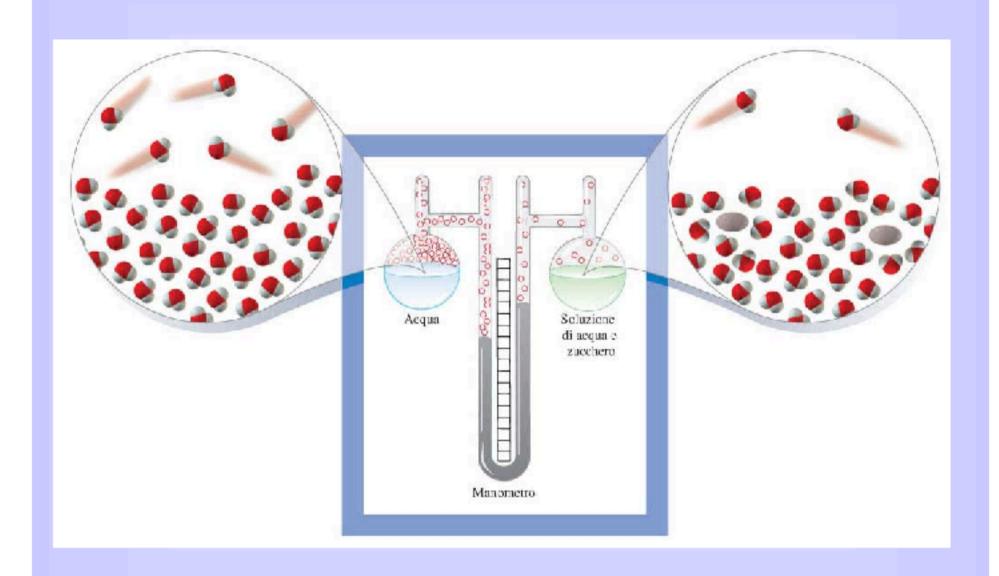
La massa di $Pb(NO_3)_2$ è:

$$massa_{Pb(NO_3)_2} = 0,907 \text{ mol} \times 331,2 \text{ g/mol} = 300 \text{ g}$$

La massa di acqua è:

$$massa_{H,O} = 1252 g - 300 g = 952 g$$

La molalità è quindi:


molalità =
$$\frac{0,907 \text{ mol}}{0,952 \text{ Kg}} = 0,953 \text{ m}$$

<u>Proprietà colligative</u>

Le proprietà colligative delle soluzioni sono proprietà che dipendono dalla concentrazione delle molecole di soluto o degli ioni in soluzione, ma non dalla loro natura.

Abbassamento della tensione di vapore

Alla fine dell'800 fu sperimentalmente osservato che la tensione di vapore del solvente veniva abbassata dall'aggiunta di un soluto non volatile. In particolare nel 1886 Raoult osservò che l'entità di questo abbassamento non dipendeva dal tipo di soluto ma solo dalla sua frazione molare.

Abbassamento della tensione di vapore

Consideriamo la soluzione di un solvente volatile A e un soluto non elettrolita B (volatile o non volatile) ad una certa temperatura costante.

La <u>legge di Raoult</u> stabilisce che: la tensione di vapore parziale del solvente, P_A , sopra la soluzione è uguale alla tensione di vapore del solvente puro, P_A °, moliplicata per la frazione molare del solvente, x_A

$$P_A = x_A P_A^{\circ}$$

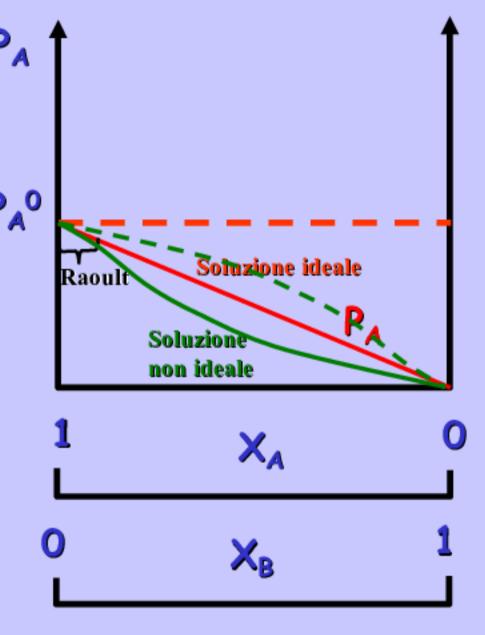
Se il soluto è non volatile P_A è la pressione di vapore **totale** della soluzione.

Poiché x_A è minore di 1 si ha un abbassamento della tensione di vapore rispetto al solvente puro.

Questo abbassamento sarà dato da:

$$\Delta P = P_A^{\circ} - P_A$$

In base alla legge di Raoult


$$\Delta P = P_A^\circ - P_A^\circ \times_A = P_A^\circ (1 - \times_A) = P_A^\circ \times_B$$

L'abbassamento della tensione di vapore dipende dalla concentrazione del soluto $x_{\rm B}$ ma non dalla sua natura ed è quindi una proprietà colligativa.

Dalle relazioni precedenti consegue anche una relazione lineare (retta) fra la tensione di vapore della soluzione e la frazione molare di soluto:

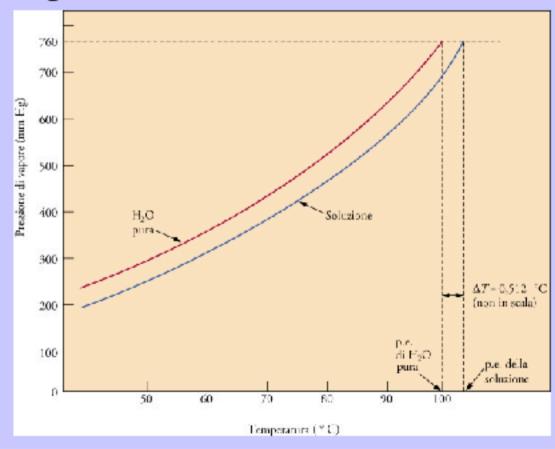
$$P_A = P_A^{\circ} - P_A^{\circ} \times_B$$

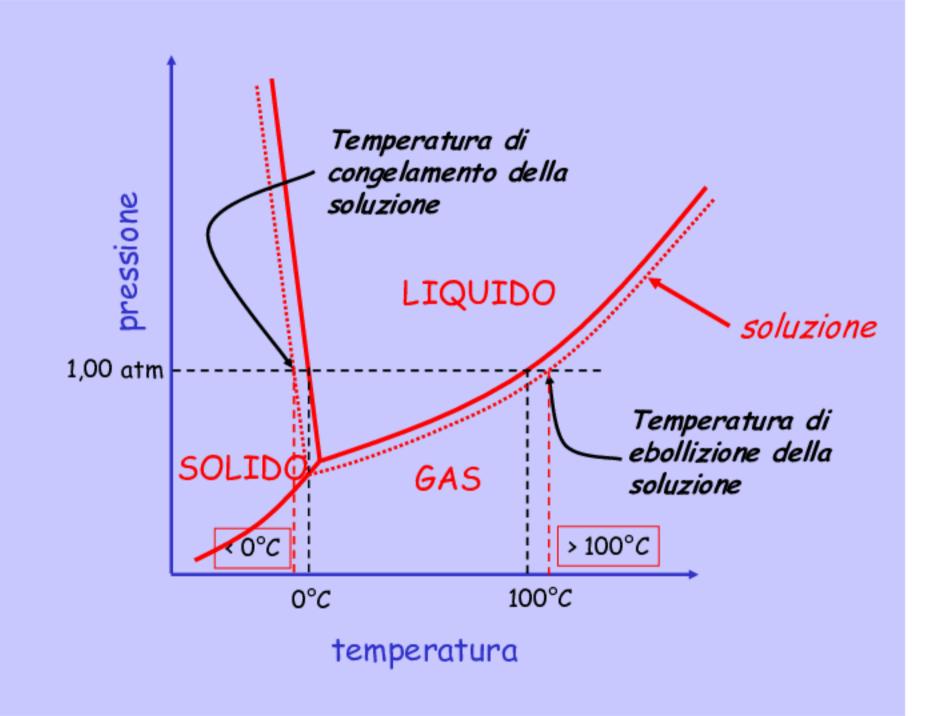
Quando vale la legge di Raoult? Vale in genere per soluzioni diluite (con x_A vicino ad 1). Quando essa vale per qualsiasi frazione molare (ciò accade quando A e B sono simili, es. benzene e toluene) la soluzione è detta ideale. In altre parole, una soluzione ideale si ha quando sia A che B seguono la legge di Raoult per ogni valore della frazione molare (oppure quando si mescolano senza sviluppo o assorbimento di calore).

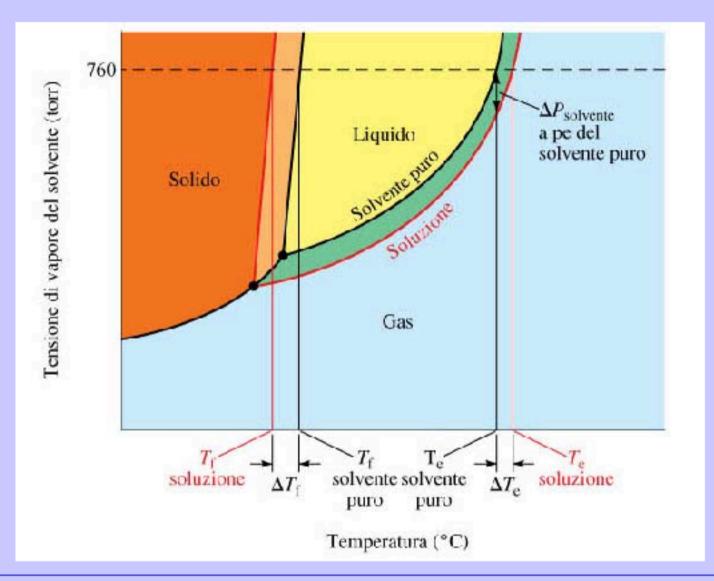
Esempio: Calcolare ΔP dell'acqua a 25°C quando 5,67 g di glucosio ($C_6H_{12}O_6$) sono sciolti in 25,2 g di acqua. A tale temperatura la tensione di vapore dell'acqua pura è 23,8 mmHg

$$\begin{split} n_{glucosio} &= \frac{5,67 \text{ g}}{180,2 \text{ g/mol}} = 0,0315 \text{ mol}_{glucosio} \\ n_{H_2O} &= \frac{25,2 \text{ g}}{18,0 \text{ g/mol}} = 1,40 \text{ mol}_{H_2O} \\ x_{glucosio} &= \frac{0,0315}{0,0315 + 1,40} = 0,022 \end{split}$$

Dalla legge di Raoult:


$$\Delta P = P_A^{\circ} x_{glucosio} = 23.8 \text{ mmHg} \times 0.0220 = 0.524 \text{ mmHg}$$


$$P_A = P_A^{\circ} x_{H2O} = 23.8 \text{ mmHg} \times (1-0.0220) = 23.3 \text{ mmHg}$$


Innalzamento ebullioscopico ed Abbassamento crioscopico

Abbiamo visto che l'aggiunta di un soluto non volatile abbassa la tensione di vapore della soluzione.

Un grafico della tensione di vapore contro T mostra che occorre una temperatura maggiore affinchè la tensione di vapore raggiunga una atmosfera e si abbia ebollizione

Un diagramma di fase completo mostra che per una soluzione si ha un innalzamento del punto di ebollizione e un abbassamento del punto di fusione rispetto al solvente Per soluzioni diluite si può dimostrare che

$$\Delta T_b = T_b(soluzione) - T_b(solvente) = K_b m$$

 $\Delta T_f = T_f(solvente) - T_f(soluzione) = K_f m$

K_b, nota come costante ebullioscopica, e K_f, nota come costante crioscopica, sono costanti caratteristiche <u>solo</u> del solvente.

Esse hanno unità °C/m.

<u>Problema</u>: Sapendo che per l'acqua K_b= 0,512 °C/m e K_f=1,86 °C/m calcolare il punto di ebollizione e di fusione di una soluzione acquosa di glucosio 0,0222 m.

$$\Delta T_b = K_b \ m = 0.512 \ ^{\circ}C/m \times 0.0222 \ m = 0.0114 \ ^{\circ}C$$
 $T_b = 100.000 + 0.0114 = 100.011 \ ^{\circ}C$
 $\Delta T_f = K_f \ m = 1.86 \ ^{\circ}C/m \times 0.0222 \ m = 0.0413 \ ^{\circ}C$
 $T_f = 0.0000 + 0.0413 = -0.041 \ ^{\circ}C$

Le proprietà colligative possono essere usate per determinare il <u>peso molecolare</u> di sostanze non note.

<u>Problema</u>: La canfora è un solido che fonde a 179,5°C ed ha K_f = 40°C/m. Se 1,07 mg di un composto sono sciolti in 78,1 mg di canfora fusa la soluzione congela a 176,0°C. Determinare il peso molecolare del composto.

L'abbassamento del punto di congelamento è:

$$\Delta T_f = 179,5 - 176,0 = 3,5 °C$$

Da cui si ricava la molalità della soluzione:

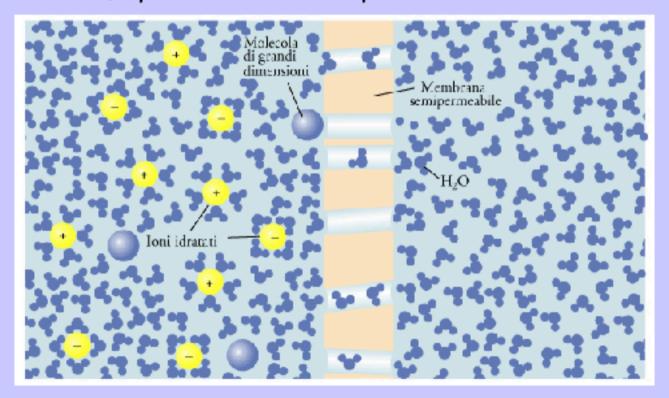
$$m = \frac{\Delta T_f}{K_f} = \frac{13,5^{\circ}C}{40^{\circ}C/m} = 0,088 \text{ m}$$

Dalla definizione di molalità si può ottenere il numero di moli del composto:

$$m = \frac{\text{moli soluto}}{\text{Kg solvente}} \longrightarrow \text{moli= } m \times \text{Kg solvente}$$

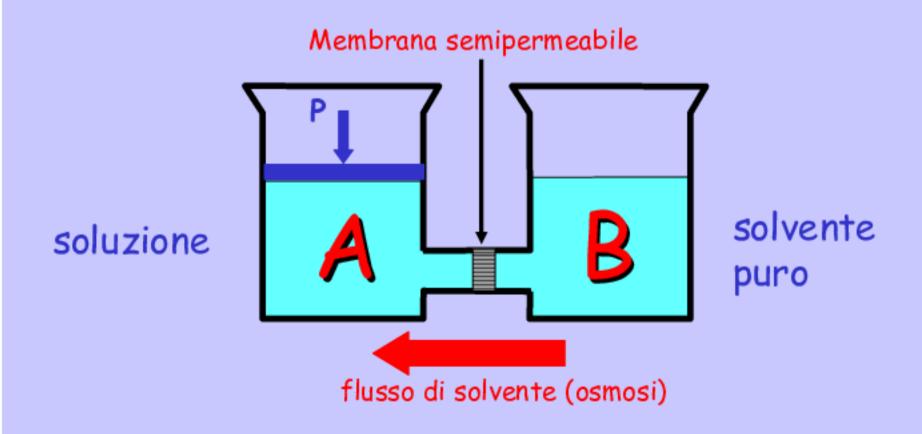
Quindi:

Moli = m
$$\times$$
 Kg solvente = 0,088 mol/Kg \times 78,1 \times 10⁻³ Kg = 6,9 \times 10⁻⁶ mol

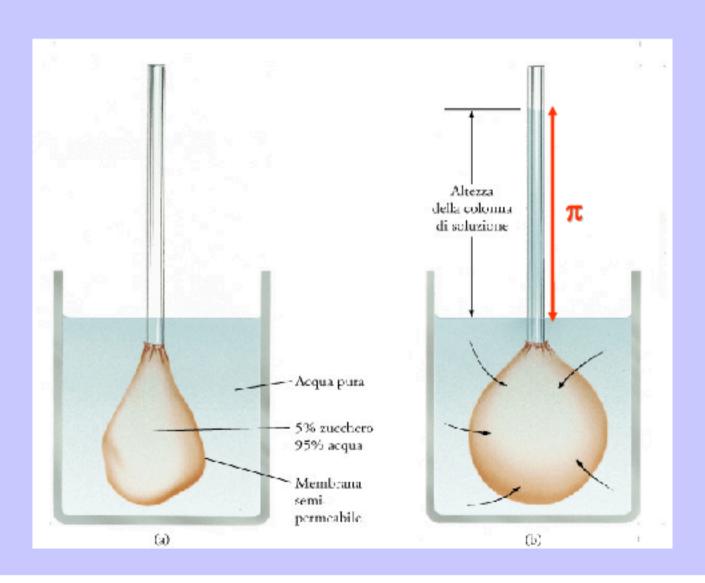

La massa molare del composto è data da:

$$\begin{aligned} & moli = \frac{massa}{M_m} \\ & M_m = \frac{massa}{moli} = \frac{1,07 \times 10^{-3} \text{ g}}{6,9 \times 10^{-6} \text{ mol}} = 1,6 \times 10^2 \text{ g/mol} \end{aligned}$$

<u>Osmosi</u>


Anche il fenomeno dell'osmosi (pressione osmotica) è associato all'abbassamento della tensione di vapore. Esso riveste una grande importanza in relazione a sistemi biologici.

Coinvolge membrane semipermeabili, cioè strati sottili e con fori abbastanza larghi da far passare le molecole di solvente, ma non di soluto, specie di elevato peso molecolare.



Osmosi: flusso di molecole di solvente dal solvente puro alla soluzione (in generale dalla soluzione meno concentrata a quella più concentrata)

Pressione osmotica: pressione che occorre esercitare sulla soluzione, A, per bloccare il flusso osmotico

La **pressione osmotica** è indicata con **π**. Un esempio è anche la pressione esercitata dalla colonna di solvente in questo esperimento:

La **pressione osmotica** è una proprietà colligativa ed è proporzionale alla concentrazione molare del soluto M:

In cui R è la costante dei gas e T è la temperatura assoluta.

Si noti l'analogia tra questa equazione e quella per i gas reali, più evidente se si tiene conto che M=n/V e quindi:

Esempio: Calcolare la pressione osmotica di una soluzione 0,02 M di glucosio a 25°C?

$$\pi$$
= MRT = 0,02 mol/l×0,0821 l·atm/(K mol)×298 K= = 0,5 atm

La pressione osmotica viene utilizzata per calcolare il peso molecolare di sostanze polimeriche o macromolecole.

<u>Problema:</u> 50 ml di una soluzione acquosa contengono 1,08 g di una proteina e presentano una pressione osmotica di 5,85 mmHg a 298 K. Quale è il peso molecolare di tale proteina?

La pressione in atmosfere è:

$$P = \frac{5,85 \text{ mmHg}}{760 \text{ mmHg/atm}} = 7,70 \times 10^{-3}$$

La concentrazione molare della proteina è:

$$\pi = MRT$$
 $\frac{\pi}{RT} = \frac{7,70 \times 10^{-3} atm}{0,0821 L \cdot atm/(K mol) \times 298K} = 3,15 \times mol/L$

Il numero di moli della proteina è:

$$M = \frac{\text{moli}}{V}$$
 moli = $M \times V = 3,15 \times 10^{-4} \,\text{mol/L} \times 50 \cdot 10^{-3} \,\text{L} = 1,58 \times 10^{-5} \,\text{mol}$

La massa molare della proteina è:

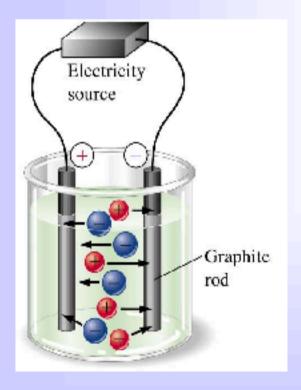
$$\mathbf{M}_{m} = \frac{\text{massa}}{\text{moli}} = \frac{1,08 \text{ g}}{1,58 \times 10^{-5} \text{ mol}} = 6,84 \times 10^{4} \text{ g/mol}$$

Soluzioni di Elettroliti

Un elettrolita è una sostanza che si scioglie in acqua producendo ioni e formando una soluzione che conduce l'elettricità.
Un non-elettrolita è una sostanza che si scioglie in acqua senza produrre ioni e forma una soluzione che non conduce l'elettricità.

Un elettrolita può essere un composto ionico o molecolare:

NaCl (s)
$$\stackrel{H_2O}{\rightarrow}$$
 Na⁺ (aq) + Cl⁻ (aq) Dissociazione
HCl (g) + $H_2O(1) \rightarrow H_3O^+$ (aq) + Cl⁻ (aq) Ionizzazione


Un non-elettrolita è un composto molecolare che non ionizza Un elettrolita può essere debole o forte

Un elettrolita forte è presente in soluzione completamente sotto forma di ioni

$$HCl(g) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$$
 Elettrolita forte

Un elettrolita debole è solo parzialmente ionizzato in soluzione

$$NH_3$$
 (g) + $H_2O(1) \stackrel{\leftarrow}{\rightarrow} NH_4^+$ (aq) + OH^- (aq) Elettrolita debole

Proprietà colligative di soluzioni di elettroliti

Per spiegare le proprietà colligative di soluzioni di elettroliti si deve tener conto della <u>concentrazione totale di tutti gli ioni</u> piuttosto che della concentrazione dell'elettrolita.

Ad esempio l'abbassamento del punto di congelamento di una soluzione di NaCl 0,1 m è (circa) il doppio di quello di una soluzione di glucosio 0,1 m.

Ciò perché ogni unità formula NaCl si dissocia in ioni Na⁺ e Cl⁻, cioè in due particelle che contribuiscono entrambe a tale proprietà colligativa.

In generale per le principali proprietà colligative si può scrivere:

$$\Delta T_b = i K_b m$$

$$\Delta T_f = i K_f m$$

$$\pi = i M R T$$

in cui i è il numero di ioni provenienti da ogni unità formula.

NaCl
$$\longrightarrow$$
 Na⁺ + Cl⁻ i=2
 $K_2SO_4 \longrightarrow 2K^+ + SO_4^{2-}$ i=3

$$Fe_2(SO_4)_3 \longrightarrow 2Fe^{3+} + 3SO_4^{2-}$$
 i=5

Questo è rigorosamente vero solo per soluzioni molto diluite.