DIPARTIMENTO DI FARMACIA – C.d.S. in Farmacia CORSO DI CHIMICA GENERALE ED INORGANICA

PRIMO PARZIALE - 28 Aprile 2016

COGNOME	NOME										
	ta la risposta (una sola) che si ritiene esatta. Alle risposte esatte verranno assegnati +2 punti mentre a quelle errate -1/2. Ist risponde verrà assegnato un punteggio nullo. Non è consentita la consultazione di libri o appunti. A - 2,5										
1 - Quali delle seguenti molecole o ioni possono essere rappresentate da più formule di risonanza: (a) CO ₂ ; (b) ClO ⁻ ; (c) NO ₂ ⁻ ; (d) HCN	□ B - 5 □ C - 4										
□ A - solo (c) □ B - (c) e (d) □ C - tutte □ D - (a), (c) e (d) 2 - Calcolare il calore assorbito dalla dissoluzione di 15,0 g di nitrato di sodio, sapendo che la dissoluzione di una mole assorbe 7,3 kcal.	dalla legge di Graham, che stabilisce che la velocità di effusione (diffusione) ad una data temperatura dipende solo dalla massa molecolare (p.M.), ed è inversamente proporzionale alla sua radice quadrata". Quale delle seguenti affermazioni NON può essere dedotta dalla										
□ A - 7,3 kcal □ B - 1,29 kcal □ C - 0,73 kcal □ D - 0,13 kcal	porzionale alla radice quadrata del p.M. □ B - A parità di temperatura i gas più leggeri effondono più velocemente										
3 – Calcolare il punto di ebollizione di una soluzione acquosa di nitrato di calcio 17,5% in peso. (La costante ebullioscopica dell'acqua vale 0,52 °C/m)	□ D - A parità di temperatura un gas di p.M. 25 u.m.a. effonde con velocità doppia rispetto ad un gas di										
□ A - 99,33 °C □ B - 102,02 °C □ C - 97,98 °C □ D - 100,67 °C	8 - La specie Al³+ è isoelettronica con: □ A - Ga										
4 - Il cloro gassoso può essere preparato facendo reagire HCl con MnO₂, tramite la reazione (da bilanciare): MnO₂(s) + HCl(aq) → Cl₂(g) + MnCl₂(aq) + H₂O(l) Si calcoli il volume di cloro prodotto alla pressione di 1,5 atm e a 20°C dalla reazione di 750 mL di una soluzione di HCl 0,5 M.	☐ C - Ga ³⁺ ☐ D - Mg ²⁺ 9 - Un ossido di manganese contiene 0,98 g di manganese per grammo di ossigeno. Quale è la formula empi-										
□ A - 0,36 L □ B - 1,50 L □ C - 6,00 L □ D - 12,0 L	\square B- MnO_2 \square C- Mn_2O_3										
5 - Sono presenti più atomi di idrogeno in 100,0 g di:	10 - Quale e' il numero atomico (Z) dell'elemento F:										
□ A - benzene, C6H6 (PM=78) $ □ B - propene, C3H6 (PM=42) $ $ □ C - acetilene, C2H2 (PM=26) $ $ □ D - toluene, C7H8 (PM=92)$	□ A - 19 □ B - 9 □ C - 6 □ D - 7										
6 – Facendo reagire 8 g di idrogeno con 80 g di ossigeno, quante moli di acqua si ottengono?	11 − Si forma <u>sempre</u> un legame covalente tra: □ A - metalli alcalini e alogeni										

☐ B - atomi di differente elettronegatività ☐ C - atomi di non metalli	14 - Quante moli di atomi di ossigeno sono presenti in 80 g di acido solforico?							
□ D - atomi metallici	□ A - 3,26							
12 – Determinare l'ibridizzazione degli atomi di carbo- nio nella molecola con la seguente struttura di Lewis	□ B - 0,82 □ C - 2,93							
;o:	□ D - 0,73							
$\begin{array}{ccc} H_3C - \stackrel{\square}{C} - C \equiv N : \\ 1 & 2 & 3 \end{array}$	15 - A 25°C la tensione di vapore del benzene puro è 0,125 atm. Se 0,8 moli di naftalene vengono sciolte in							
\square A - $C_1 = sp^3$; $C_2 = sp^2$; $C_3 = sp$ \square B - $C_1 = sp^2$; $C_2 = sp^2$; $C_3 = sp^3$	200 g di benzene, C_6H_6 , quale è la nuova tensione di vapore del benzene?							
\Box C - $C_1 = sp^3$; $C_2 = sp$; $C_3 = sp$ \Box D - $C_1 = sp^3$; $C_2 = sp$; $C_3 = sp^3$	□ A - 0,095 atm							
	□ B - 0,030 atm							
13 – La reazione $3N_2O(g) + 2NH_3(g) \rightarrow 4N_2(g) + 3H_2O(g)$	☐ C - 0,155 atm ☐ D - la tensione di vapore resta invariata							
presenta $\Delta H = -879.6 \text{ kJ}.$ Sapendo che $\Delta H_f^{\circ}(NH_3) = -45.9 \text{ kJ} \cdot \text{mol}^{-1} \text{ e}$	 16 – Per quale dei seguenti tipi di solido vi aspettate							
$\Delta H_f^{\circ}(H_2O) = -241.8 \text{ kJ} \cdot \text{mol}^{-1}$, calcolare $\Delta H_f^{\circ}(N_2O)$.	una temperatura di fusione più bassa ?							
□ A246 kJ·mol ⁻¹ □ B82 kJ·mol ⁻¹	□ A - solido covalente □ B - solido ionico							
□ C - 82 kJ·mol ⁻¹	☐ C - solido metallico							
\square D - 246 kJ·mol ⁻¹	□ D - solido molecolare							

Costanti utili

Numero di Avogadro, N = 6,022×1023 ; Costante dei gas, R = 0,0821 L atm moli-1 K-1 = 8,314 J moli-1 K-1 ; Costante di Rydberg=2,180×10-18 J Velocità della luce c=3,00×108 m/s Costante di Planck h=6,63×10-34 J·s

Costante di Faraday, F=96500 C/mol

IA	IIA	IIIA IVA VA VIA VIIA															
Н																He	
1,008														4,00			
Li	Be											В	С	N	O	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93	58,69	63,55	65,39			74,92		79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
					95,94					107,9		114,8	118,7				