di ipobromito di sodio, NaBrO.

DIPARTIMENTO DI FARMACIA CORSO DI CHIMICA GENERALE ED INORGANICA

Problemi – 8 Settembre 2014

COGNOME	NOME	MAT
Alle domande a cui non si risponde verrà a		poste esatte verranno assegnati +2 punti mentre a quelle errate −1/2. è consentita la consultazione di libri o appunti.
1 — L'ammoniaca è una $K_b=1,8\times10^{-5}$. Calcolare il pH di un sciogliendo in acqua 34,0 g di am cloruro di ammonio. \square A - 10,4 \square B - 9,83 \square C - 8,14 \square D - 8,42 2 — Calcolare il ΔH° della segu	moniaca e 8,03 g di	□ A - 3,8 □ B - 10,2 □ C - 11,8 □ D - 2,2 6 - A 298 K tra i composti solidi A e B si instaura il seguente equilibrio: $A(s) + B(s) \rightleftharpoons 4C(g)$ Ad equilibrio raggiunto, la pressione esercitata da C è pari a 0,12 atm. Determinare il ΔG° associato alla reazione.
$H_2O(g) + SO_3(g) \rightarrow H_2SO_4(g)$ Sulla base dei seguenti dati termoch $H_2(g) + 1/2O_2(g) \rightarrow H_2O(g)$ $S(s) + 3/2O_2(g) \rightarrow SO_3(g)$	l) nimici: ΔH°= -242 kJ/mol ΔH°= -396 kJ/mol ΔH°= -814 kJ/mol	□ A - i dati non sono sufficienti □ B - 21012 J □ C - 5253 J □ D - 15760 J 7 - In un recipiente inizialmente vuoto a 25°C vengono inseriti una certa quantità di FeO(s) e 15,0 atm di CO(g). Si instaura il seguente equilibrio: FeO(s) + CO(g) ➡ Fe(s) + CO ₂ (g) Sapendo che per questo equilibrio Kp=10,4 determinare la pressione di CO ₂ ad equilibrio raggiunto. □ A - occorre conoscere la massa di FeO(s) □ B - 1,3 atm
a $Cr_2O_7^{2-}$ + b SO_3^{2-} \rightarrow c C Quali sono i coefficienti a,b,c,d?	r ³⁺ + d SO ₄ ²⁻	□ C - 9,2 atm □ D - 13,7 atm 8 - La generica reazione
□ A - a=1, b=3, c=1, d=3 □ B - a=1, b=6, c=2, d=3 □ C - a=2, b=3, c=2, d=3 □ D - a=1, b=3, c=2, d=3 4 - Una soluzione satura di concentrazione di ioni F⁻ pari a 4,2:		è del secondo ordine rispetto ad A e del primo ordine rispetto a B. Si fa un esperimento con concentrazione iniziale di A pari a 0,30 mol/L e con concentrazione iniziale di B pari a 0,02 mol/L, misurando una velocità iniziale pari a 1,92×10 $^{-3}$ M/s. Si calcoli la costante cinetica di
Kps del fluoruro di piombo. □ A - 3,0×10 ⁻⁷ □ B - 8,7×10 ⁻⁹ □ C - 3,7×10 ⁻⁸ □ D - 4,0×10 ⁻¹¹	NI SI CUICOII II	questa reazione \square A- 0,32 L ² mol ⁻² s ⁻¹ \square B- 53 L ² mol ⁻² s ⁻¹ \square C- 1,07 L ² mol ⁻² s ⁻¹ \square D- 16 L ² mol ⁻² s ⁻¹
5 – L'acido ipobromoso, HBrocon Ka=2,5×10 ⁻⁹ . Calcolare il pH di		9 – La costante di equilibrio della seguente reazione è

 $NH_4^+ + H_2O \Longrightarrow NH_3 + H_3O^+$

 \Box C - 1,21×10³ mL

Λ	
$Kb(NH_3)$ è la costante di ionizzazione basica di NH_3 e $Ka(NH_4^+)$ è la costante di ionizzazione acida di NH_4^+	□ D - 6,03×10 ² mL
	13 – Quale delle seguenti affermazioni è vera per la
\square A- Ka(NH ₄ ⁺)	seguente reazione:
\square B- Kw/Ka(NH ₄ ⁺)	
\square C- 1/Kb(NH ₃)	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $\Delta H < 0$
\square D- Ka(NH ₄ ⁺)×Kb(NH ₃)	
D 1(d(14114)/(10(14113)	☐ A - ad alta temperatura si forma meno ammoniaca
10 – Quale delle seguenti affermazioni è vera per	☐ B - ad alta pressione si forma meno ammoniaca
la molecola NO ₃ ⁻ ?	☐ C - variazioni di temperatura non hanno effetto su
☐ A - Ha geometria trigonale piramidale con l'atomo	questo equilibrio
di azoto ibridato sp ³	☐ D - variazioni di pressione non hanno effetto su
☐ B - Ha geometria trigonale planare con l'atomo di	questo equilibrio
azoto ibridato sp ²	questo equinorio
☐ C - Ha geometria piegata con l'atomo di azoto	
ibridato sp ²	14 – Quali sono le percentuali in massa degli
☐ D - Ha geometria tetraedrica con l'atomo di azoto	elementi K, P e O presenti in K ₃ PO ₄ ?
ibridato sp ³	F
ioridato sp	□ A - 44,9 % K; 18,4 % P; 36,7 % O
	□ B - 14,2 % K; 14,6 % P; 71,2 % O
11 – Calcolare quanti grammi di glucosio, C ₆ H ₁₂ O ₆ ,	□ C - 55,3 % K; 14,6 % P; 30,1 % O
si devono sciogliere in 500 g di acqua per abbassarne la	□ D - 55,3 % K; 37,2 % P; 7,53 % O
temperatura di congelamento a –4,00°C. (La costante	35,5 76 10, 57,2 76 1, 7,55 76 0
crioscopica dell'acqua è K _C =1,86)	15 – Dall'elettrolisi di fluoruro di alluminio fuso
choscopica den acqua e RC-1,00)	AlF ₃ , si ottengono:
П А 102 Г «	This, of ottengono.
□ A - 193,5 g	\square A - ioni Al ³⁺ (l) e ioni F ⁻ (l)
□ B - 48,6 g	\square B - Al(s) e $F_2(g)$
□ C - 96,8 g	\square C - ioni Al ⁺ (l) e ioni F ₃ ⁻ (l)
□ D - 24,3 g	\square D - H ₂ (g) e ioni F ₃ -(l)
12 – Calcolare il volume di ossigeno a 25°C e 1,0	16 – Per quale dei seguenti composti vi aspettate il
atm sviluppato dalla reazione completa di 6,7 g acqua	punto di ebollizione più basso?
ossigenata:	r r r
$H_2O_2(l) \rightarrow H_2O(l) + 1/2O_2(g)$	□ A - HF
	□ B - SiH ₄
$\square A - 4,82 \times 10^3 \text{ mL}$	C - CH ₄
\Box B - 2,41×10 ³ mL	

Costanti utili

 \square D - H_2O

Numero di Avogadro, N = $6,022\times10^{23}$; Costante dei gas, R = 0,0821 L atm moli $^{-1}$ K $^{-1}$ = 8,314 J moli $^{-1}$ K $^{-1}$; Costante di Rydberg= $2,180\times10^{-18}$ J Velocità della luce c= $3,00\times10^{8}$ m/s Costante di Planck h= $6,63\times10^{-34}$ J·s

Costante di Faraday, F=96500 C/mol

IA	IIA											IIIA	IVA	VA	VIA	VIIA	
Н																	He
1,008																	4,00
Li	Be											В	C	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93		63,55	65,39					79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85 47										107 9			118 7			126 9	131 1