COGNOME	NOME
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. Alle Alle domande a cui non si risponde verrà assegnato un punteggio nullo.	
1 - Secondo la teoria VB in quali delle seguenti molecole, NH ₃ , ClO ₂ -, CCl ₃ ⁺ , BeCl ₂ , l'atomo centrale impiega orbitali ibridi sp³ per formare i legami? □ A - BeCl ₂ e CCl ₃ ⁺ □ B - NH ₃ e ClO ₂ - □ C - solo CCl ₃ ⁺ □ D - NH ₃ , ClO ₂ - e CCl ₃ ⁺ 2 - Indicare il composto in cui l'azoto ha numero di ossidazione minore: □ A - ammoniaca □ B - acido nitroso	di soluzione sapendo che HClO è un acido debole con Ka= 3.8×10^{-8} . \square A - 10,1 \square B - 3,9 \square C - 9,7 \square D - 4,3 7 - La seguente reazione 2 CrCl ₃ (s) \rightarrow Cl ₂ (g) + 2 CrCl ₂ (s) presenta Δ H° = 322,17 kJ mol ⁻¹ . Sapendo che CrCl ₃ (s) presenta Δ H° f = -556,47 kJ mol ⁻¹ , calcolare il Δ H° f di CrCl ₂ (s).
☐ C- acido nitrico ☐ D- monossido di diazoto 3 - L'acido cianico, HOCN, è un acido debole con	□ A -790,56 kJ mol ⁻¹ . □ B -395,39 kJ mol ⁻¹ . □ C -556,47 kJ mol ⁻¹ .
Ka=3,5×10 ⁻⁴ . 500 mL di una soluzione contengono 81 g di cianato di potassio . Si calcoli il pH della soluzione. □ A - 1,58 □ B - 12,4 □ C - 8,88	□ D I dati forniti non sono sufficienti. 8 - Quante moli di acido solforico si formano dalla reazione tra 4 moli di SO ₂ , 2 moli di O ₂ e 3 moli di H ₂ O che si combinano secondo la reazione (da bilanciare): SO ₂ (g) + O ₂ (g) + H ₂ O(g) → H ₂ SO ₄ (g)
□ D - 5,12 4 - La pirite, FeS ₂ , brucia in aria secondo la reazione (da bilanciare) FeS ₂ (s) + O ₂ (g) \rightarrow FeO(s) + SO ₂ (g) Quanti grammi di FeS ₂ sono necessari per preparare 100,0 litri di SO ₂ a 1,0 atm e 500 °C? □ A - 47,2 g □ B - 188,8 g □ C - 377,7 g □ D - 94,4 g	□ A - 2 moli □ B - 3 moli □ C - 4 moli □ D - 8 moli 9 - Sapendo che la parete cellulare dei batteri è una membrana semipermeabile all'acqua e che il liquido intracellulare contiene NaCl diluito, le proprietà battericide di una soluzione concentrata di NaCl sono dovute a:
5 - La seguente reazione 2NOBr(g) → 2NO(g) + Br₂(g) presenta un ΔH°=16,1 kJ/mol. Quale delle seguenti condizioni favorisce lo spostamento dell'equilibrio verso i prodotti? □ A - una diminuzione della temperatura □ B - una diminuzione della pressione totale □ C - un aumento della pressione parziale di NO □ D - una diminuzione della concentrazione di NOBr 6 - Calcolare il pH di una soluzione ottenuta sciogliendo 1,5 g di HClO in acqua per ottenere 400 mL	□ A - l'acqua passa attraverso la membrana dall'esterno all'interno della cellula batterica che si gonfia esplodendo e muore □ B - il sale passa all'interno della cellula determinando un abbassamento crioscopico e quindi il congelamento della cellula batterica che muore □ C - il sale passa all'interno della cellula determinando un innalzamento ebullioscopico e quindi il riscaldamento della cellula batterica che muore □ D - l'acqua passa attraverso la membrana dall'interno all'esterno della cellula batterica che si disidrata e muore

Α

10 – Sapendo che la Kps di PbSO ₄ è 6,3×10 ⁻⁷ , indicare la il volume di acqua necessario per sciogliere 12,0 g di PbSO ₄ . (Il peso atomico del piombo è 207,2	☐ C - idratata ☐ D - apolare
u.m.a.)	14 - 500 mL di una soluzione di NaCl 1 M in acqua a 25°C vengono diluiti con acqua fino a 1 L d
□ A - 50 litri □ B - 100 litri	soluzione. Il pH della soluzione così ottenuta è
□ C - 200 litri	□ A - 0,3
□ D - 400 litri	□ B - 13,7
D = 400 Itti	□ C - 7
11 – Si calcoli il numero di moli di atomi di	□ D - 14
ossigeno presenti in 10 g di acido cloroso.	
	15 - In una cella voltaica il ponte salino serve a
□ A - 0,15	
□ B - 0,12	☐ A - trasportare la corrente elettrica
□ C - 0,30	☐ B - ad impedire che le soluzioni dei due elettrodi si
□ D - 0,24	mescolino ☐ C - a mantenere la neutralità elettrica in ogni
12 – L'ordine di una reazione è:	semicella permettendo il passaggio di ioni
12 – L'Ordine di una reazione e.	□ D - introdurre gli ioni che partecipano
☐ A - il numero di atomi, molecole o ioni che	all'ossidoriduzione in soluzione
prendono parte all'atto elementare più veloce di una	wir oborwort was one in borws one
reazione	16 – Indicare il valore della Kc per l'equilibrio:
☐ B - la somma dei coefficienti stechiometrici dei	$C(s) + CO_2(g) \rightleftharpoons 2 CO(g)$
reagenti	a 1000°C sapendo che in un recipiente di 5,0 L una
☐ C - la molecolarità del primo stadio della reazione	miscela all'equilibrio contiene: 10 moli di C(s), 10 moli
☐ D - un numero determinabile solo sperimentalmente	di CO ₂ e 25 moli CO.
12 Compositores si esimplis in total among di	П л 12.5
13 – Se una sostanza si scioglie in tetracloruro di carbonio e non in acqua, è probabile che la sua molecola	□ A - 12,5 □ B - 6,25
sia	□ C - 62,5
Jiu	\Box D - 0,25
□ A - polare	,
□ B - ionica	
	•

Costanti utili

Numero di Avogadro, N = $6,022\times10^{23}$; Costante dei gas, R = 0,0821 L atm moli $^{-1}$ K $^{-1}$ = 8,314 J moli $^{-1}$ K $^{-1}$; Costante di Rydberg= $2,180\times10^{-18}$ J Velocità della luce c= $3,00\times10^8$ m/s Costante di Planck h= $6,63\times10^{-34}$ J·s

Costante di Faraday, F=96500 C/mol

ΙA	IIA											IIIA	IVA	. VA	VIA	VIIA	L
Н																	He
1,008																	4,00
Li	Be											В	C	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90	50,94	52,00	54,94	55,85	58,93		63,55	65,39		72,61	74.92		79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
					95,94					107,9		114,8	118,7		127,6	126,9	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
										197,0			207,2				

COGNOME	NOME
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. Alle Alle domande a cui non si risponde verrà assegnato un punteggio nullo.	Non e' consentita la consultazione di libri o appunti
1 - Quante moli di acido solforico si formano dalla reazione tra 8 moli di SO ₂ , 4 moli di O ₂ e 6 moli di H ₂ O che si combinano secondo la reazione (da bilanciare): SO ₂ (g) + O ₂ (g) + H ₂ O(g) → H ₂ SO ₄ (g) A - 6 moli B - 16 moli C - 4 moli D - 8 moli 2 - In una cella voltaica il ponte salino serve a	6 − L'ordine di una reazione è: □ A - la somma dei coefficienti stechiometrici dei reagenti □ B - il numero di atomi, molecole o ioni che prendono parte all'atto elementare più veloce di una reazione □ C - un numero determinabile solo sperimentalmente □ D - la molecolarità del primo stadio della reazione 7 - L'acido cianidrico, HCN, è un acido debole con
□ A - ad impedire che le soluzioni dei due elettrodi si mescolino □ B - trasportare la corrente elettrica □ C - introdurre gli ioni che partecipano all'ossidoriduzione in soluzione □ D - a mantenere la neutralità elettrica in ogni semicella permettendo il passaggio di ioni	Ka=4,9×10 ⁻¹⁰ . 500 mL di una soluzione contengono 70 g di cianuro di potassio . Si calcoli il pH della soluzione. □ A - 4,49 □ B - 9,51 □ C - 11,8 □ D - 2,18
3 – La seguente reazione $CS_2(l)+3O_2(g) \rightarrow CO_2(g)+2$ $SO_2(g)$ presenta $\Delta H^\circ = -1075$ kJ mol ⁻¹ . Sapendo che per $CS_2(l)$ $\Delta H^\circ_f = 88$ kJ mol ⁻¹ , e per $CO_2(g)$ $\Delta H^\circ_f = -393$ kJ mol ⁻¹ calcolare il ΔH°_f di $SO_2(g)$. □ A -297 kJ mol ⁻¹ . □ B -1556 kJ mol ⁻¹ . □ C -594 kJ mol ⁻¹ . □ D I dati forniti non sono sufficienti.	8 - Secondo la teoria VB in quali delle seguenti molecole, NH ₃ , ClO ₂ , CCl ₃ ⁺ , BeCl ₂ , l'atomo centrale impiega orbitali ibridi sp ² per formare i legami? □ A - BeCl ₂ e CCl ₃ ⁺ □ B - NH ₃ e ClO ₂ □ C - solo CCl ₃ ⁺ □ D - NH ₃ , ClO ₂ e CCl ₃ ⁺ 9 - Indicare il valore della Kc per l'equilibrio: C(s) + CO ₂ (g) → 2 CO(g)
4 - Sapendo che la Kps di PbSO ₄ è 6,3×10 ⁻⁷ , indicare la il volume di acqua necessario per sciogliere 24,0 g di PbSO ₄ . (Il peso atomico del piombo è 207,2 u.m.a.) □ A - 50 litri □ B - 100 litri □ C - 200 litri □ D - 400 litri	a 900°C sapendo che in un recipiente di 5,0 L una miscela all'equilibrio contiene: 10 moli di C(s), 10 moli di CO₂ e 15 moli CO. □ A - 0,75 □ B - 2,25 □ C - 62,5 □ D - 4,50
5 - 500 mL di una soluzione di NaCl 1 M in acqua a 25°C vengono diluiti con acqua fino a 1 L di soluzione. Il pH della soluzione così ottenuta è \[A - 13,7 \] \[B - 0,3 \] \[C - 14 \] \[D - 7 \]	10 − La pirite, FeS ₂ , brucia in aria secondo la reazione (da bilanciare) FeS ₂ (s) + O ₂ (g) → FeO(s) + SO ₂ (g) Quanti grammi di FeS ₂ sono necessari per preparare 50,0 litri di SO ₂ a 1,0 atm e 500 °C? \square A - 47,2 g \square B - 188,8 g \square C - 23,6 g \square D - 94,4 g

11 − Se una sostanza si scioglie in acqua e non in tetracloruro di carbonio, è probabile che la sua molecola sia □ A − polare □ B − omonucleare □ C − idratata □ D − apolare	□ A - un aumento della temperatura □ B - un aumento della pressione totale □ C - un aumento della pressione parziale di NO □ D - una diminuzione della concentrazione di NOBr 15 - Indicare il composto in cui l'azoto ha numero di ossidazione maggiore:
12 – Calcolare il pH di una soluzione ottenuta sciogliendo 1,5 g di HCNO in acqua per ottenere 400 mL di soluzione sapendo che HCNO è un acido debole con Ka=3,5×10 ⁻⁴ .	□ A- ammoniaca □ B- acido nitroso □ C- acido nitrico □ D- monossido di diazoto
□ A - 11,7 □ B - 2,3 □ C - 5,8 □ D - 8,2	16 – Sapendo che la parete cellulare dei batteri è una membrana semipermeabile all'acqua e che il liquido intracellulare contiene NaCl diluito, le proprietà battericide di una soluzione concentrata di NaCl sono dovute a:
13 – Si calcoli il numero di moli di atomi di ossigeno presenti in 20 g di acido clorico.	☐ A - il sale passa all'interno della cellula determinando un abbassamento crioscopico e quindi il congelamento della cellula batterica che muore
□ A - 0,60 □ B - 0,70 □ C - 0,35 □ D - 0,20	 □ B - l'acqua passa attraverso la membrana dall'esterno all'interno della cellula batterica che si gonfia esplodendo e muore □ C - l'acqua passa attraverso la membrana dall'interno all'esterno della cellula batterica che si
La seguente reazione $2NOBr(g) \rightleftharpoons 2NO(g) + Br_2(g)$ presenta un $\Delta H^\circ=16,1$ kJ/mol. Quale delle seguenti condizioni favorisce lo spostamento dell'equilibrio verso i prodotti?	disidrata e muore □ D - il sale passa all'interno della cellula determinando un innalzamento ebullioscopico e quindi il riscaldamento della cellula batterica che muore

Costanti utili

Numero di Avogadro, $N=6,022\times10^{23}$; Costante dei gas, R=0,0821 L atm moli $^{-1}$ K $^{-1}=8,314$ J moli $^{-1}$ K $^{-1}$; Costante di Rydberg= $2,180\times10^{-18}$ J Velocità della luce c= $3,00\times10^{8}$ m/s Costante di Planck h= $6,63\times10^{-34}$ J·s

Costante di Faraday, F=96500 C/mol

IA IIA IIIA IVA VA VIA VIIA

Н																	Не
1,008																	4,00
Li	Be											В	C	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90	50,94	52,00	54,94	55,85	58,93		63,55	65,39		72,61	74.92		79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
					95,94					107,9		114,8	118,7		127,6	126,9	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
										197.0			207.2				

COGNOME	NOME
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. Alle domande a cui non si risponde verrà assegnato un punteggio nullo.	e risposte esatte verranno assegnati +2 punti mentre a quelle errate –1/2. Non e' consentita la consultazione di libri o appunti
1 - Si calcoli il numero di moli di atomi di ossigeno presenti in 5 g di acido cloroso.	di soluzione sapendo che HClO è un acido debole con $Ka=3.8 \times 10^{-8}$.
□ A - 0,15 □ B - 0,12 □ C - 0,30 □ D - 0,06	□ A - 9,8 □ B - 4,2 □ C - 4,7 □ D - 9,3
2 – Sapendo che la parete cellulare dei batteri è una membrana semipermeabile all'acqua e che il liquido intracellulare contiene NaCl diluito, le proprietà battericide di una soluzione concentrata di NaCl sono dovute a:	6 – La seguente reazione 2NOBr(g) ≠ 2NO(g) + Br₂(g) presenta un ΔH°=16,1 kJ/mol. Quale delle seguenti condizioni favorisce lo spostamento dell'equilibrio verso i prodotti?
□ A - il sale passa all'interno della cellula determinando un innalzamento ebullioscopico e quindi il riscaldamento della cellula batterica che muore □ B - l'acqua passa attraverso la membrana dall'interno all'esterno della cellula batterica che si	 □ A - una diminuzione della temperatura □ B - un aumento della pressione totale □ C - una diminuzione della pressione parziale di NO □ D - una diminuzione della concentrazione di NOBr
disidrata e muore □ C - l'acqua passa attraverso la membrana dall'esterno all'interno della cellula batterica che si gonfia esplodendo e muore □ D - il sale passa all'interno della cellula determinando un abbassamento crioscopico e quindi il	7 - Indicare il valore della Kc per l'equilibrio: C(s) + CO ₂ (g) → 2 CO(g) a 800°C sapendo che in un recipiente di 4,0 L una miscela all'equilibrio contiene: 8 moli di C(s), 20 moli di CO ₂ e 8 moli CO.
congelamento della cellula batterica che muore 3 – Se una sostanza si scioglie in tetracloruro di carbonio e non in acqua, è probabile che la sua molecola sia	□ A - 12,5 □ B - 3,20 □ C - 0,40 □ D - 0,80
□ A - ionica □ B - polare □ C - apolare □ D - idratata	8 - La pirite, FeS ₂ , brucia in aria secondo la reazione (da bilanciare) FeS ₂ (s) + O ₂ (g) → FeO(s) + SO ₂ (g) Quanti grammi di FeS ₂ sono necessari per preparare 200,0 litri di SO ₂ a 1,0 atm e 500 °C?
4 - Quante moli di acido solforico si formano dalla reazione tra 12 moli di SO ₂ , 6 moli di O ₂ e 9 moli di H ₂ O che si combinano secondo la reazione (da bilanciare):	□ A - 47,2 g □ B - 188,8 g □ C - 377,7 g □ D - 94,4 g
$SO_2(g) + O_2(g) + H_2O(g) \rightarrow H_2SO_4(g)$	9 – Indicare il composto in cui l'azoto ha numero di ossidazione minore :
□ A - 12 moli □ B - 3 moli	☐ A- biossido di azoto
□ C - 6 moli	☐ B- acido nitroso
□ D - 9 moli	☐ C- acido nitrico
5 - Calcolare il pH di una soluzione ottenuta sciogliendo 0,5 g di HClO in acqua per ottenere 800 mL	D- monossido di diazoto ———————————————————————————————————

10 – 500 mL di una soluzione di NaCl 1 M in acqua a 25°C vengono diluiti con acqua fino a 1 L di soluzione. Il pH della soluzione così ottenuta è	□ C - 5,12 □ D - 8,88
□ A - 7 □ B - 14 □ C - 0,3 □ D - 13,7	14 - Sapendo che la Kps di PbSO ₄ è 6,3×10 ⁻⁷ , indicare la il volume di acqua necessario per sciogliere 48,0 g di PbSO ₄ . (Il peso atomico del piombo è 207,2 u.m.a.)
□ D - 13,7 11 - Secondo la teoria VB in quali delle seguenti molecole, NH ₃ , ClO ₂ , CCl ₃ ⁺ , BeCl ₂ , l'atomo centrale	□ A - 50 litri □ B - 100 litri □ C - 200 litri □ D - 400 litri
impiega orbitali ibridi sp per formare i legami? □ A - BeCl ₂ e CCl ₃ ⁺	15 - L'ordine di una reazione è:
□ B - solo BeCl2 $ □ C - solo CCl3+ $ $ □ D - NH3, ClO2- e CCl3+$	 □ A - la molecolarità del primo stadio della reazione □ B - un numero determinabile solo sperimentalmente □ C - il numero di atomi, molecole o ioni che
12 − In una cella voltaica il ponte salino serve a □ A - a mantenere la neutralità elettrica in ogni	prendono parte all'atto elementare più veloce di una reazione □ D - la somma dei coefficienti stechiometrici dei reagenti
□ A - a mantenere la neutralità elettrica in ogni semicella permettendo il passaggio di ioni □ B - ad impedire che le soluzioni dei due elettrodi si	16 – La seguente reazione
mescolino C - trasportare la corrente elettrica D - introdurre gli ioni che partecipano all'ossidoriduzione in soluzione	2 CrCl ₃ (s) → Cl ₂ (g) + 2 CrCl ₂ (s) presenta ΔH° = 322,17 kJ mol ⁻¹ . Sapendo che CrCl ₃ (s) presenta ΔH° _f = -556,47 kJ mol ⁻¹ , calcolare il ΔH° _f di CrCl ₂ (s).
13 − L'acido cianico, HOCN, è un acido debole con Ka=3,5×10 ⁻⁴ . 500 mL di una soluzione contiene 81 g di cianato di potassio . Si calcoli il pH della soluzione. □ A − 12,4 □ B − 1,58	 □ A I dati forniti non sono sufficienti. □ B -790,56 kJ mol⁻¹. □ C -395,39 kJ mol⁻¹. □ D -556,47 kJ mol⁻¹.

Costanti utili

Numero di Avogadro, N = 6.022×10^{23} ; Costante dei gas, R = 0.0821 L atm moli $^{-1}$ K $^{-1}$ = 8.314 J moli $^{-1}$ K $^{-1}$; Costante di Rydberg= 2.180×10^{-18} J Velocità della luce c= 3.00×10^{8} m/s Costante di Planck h= 6.63×10^{-34} J·s

Costante di Faraday, F=96500 C/mol

IA	IIA											IIIA	IVA	VA	VIA	VIIA	L
Н																	Не
1,008																	4,00
Li	Be											В	C	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90	50,94	52,00	54,94	55,85	58,93		63,55	65,39		72,61	74.92		79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
					95,94					107,9		114,8	118,7		127,6	126,9	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
										197.0			207.2				

COGNOME	NOME
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. Alle Alle domande a cui non si risponde verrà assegnato un punteggio nullo.	
1- L'acido cianidrico, HCN, è un acido debole con Ka=4,9×10 ⁻¹⁰ . 500 mL di una soluzione contengono 70 g di cianuro di potassio . Si calcoli il pH della soluzione. □ A - 9,51 □ B - 4,49 □ C - 2,18 □ D - 11,8	6 − In una cella voltaica il ponte salino serve a □ A - ad impedire che le soluzioni dei due elettrodi si mescolino □ B - a mantenere la neutralità elettrica in ogni semicella permettendo il passaggio di ioni □ C - introdurre gli ioni che partecipano all'ossidoriduzione in soluzione □ D - trasportare la corrente elettrica
2 – L'ordine di una reazione è: □ A - un numero determinabile solo sperimentalmente □ B - il numero di atomi, molecole o ioni che prendono parte all'atto elementare più veloce di una reazione □ C - la somma dei coefficienti stechiometrici dei reagenti □ D - la molecolarità del primo stadio della reazione	7 - Quante moli di acido solforico si formano dalla reazione tra 16 moli di SO ₂ , 8 moli di O ₂ e 12 moli di H ₂ O che si combinano secondo la reazione (da bilanciare): SO ₂ (g) + O ₂ (g) + H ₂ O(g) → H ₂ SO ₄ (g) A - 12 moli B - 16 moli C - 6 moli D - 8 moli
3 – Se una sostanza si scioglie in acqua e non in tetracloruro di carbonio, è probabile che la sua molecola sia □ A - omonucleare □ B - polare	8 - La seguente reazione $2NOBr(g) \rightleftharpoons 2NO(g) + Br_2(g)$ presenta un $\Delta H^\circ=16,1$ kJ/mol. Quale delle seguenti condizioni favorisce lo spostamento dell'equilibrio verso i prodotti?
☐ C - apolare ☐ D - idratata 4 - Si calcoli il numero di moli di atomi di ossigeno presenti in 40 g di acido clorico.	 □ A - una diminuzione della temperatura □ B - un aumento della pressione totale □ C - un aumento della pressione parziale di NO □ D - un aumento della concentrazione di NOBr
□ A - 1,20 □ B - 0,70 □ C - 1,40 □ D - 0,40	9 – Calcolare il pH di una soluzione ottenuta sciogliendo 0,1 g di HCNO in acqua per ottenere 800 mL di soluzione sapendo che HCNO è un acido debole con Ka=3,5×10 ⁻⁴ .
5 - La pirite, FeS ₂ , brucia in aria secondo la reazione (da bilanciare) FeS ₂ (s) + O ₂ (g) → FeO(s) + SO ₂ (g) Quanti grammi di FeS ₂ sono necessari per preparare 25,0 litri di SO ₂ a 1,0 atm e 500 °C?	□ A - 7,5 □ B - 6,5 □ C - 11,0 □ D - 3,0 10 - 500 mL di una soluzione di NaCl 1 M in acqua a 25°C vengono diluiti con acqua fino a 1 L di
□ A - 47,2 g □ B - 188,8 g □ C - 23,6 g □ D - 94,4 g	soluzione. Il pH della soluzione così ottenuta è □ A - 13,7 □ B - 7 □ C - 14 □ D - 0,3

11 − La seguente reazione $CS_2(l)+3O_2(g) \rightarrow CO_2(g)+2 SO_2(g)$ presenta $\Delta H^\circ = -1075 \text{ kJ mol}^{-1}$. Sapendo che per $CS_2(l)$ $\Delta H^\circ_f = 88 \text{ kJ mol}^{-1}$, e per $CO_2(g) \Delta H^\circ_f = -393 \text{ kJ mol}^{-1}$ calcolare il ΔH°_f di $SO_2(g)$.	☐ C - il sale passa all'interno della cellula determinando un innalzamento ebullioscopico e quindi il riscaldamento della cellula batterica che muore ☐ D - l'acqua passa attraverso la membrana dall'interno all'esterno della cellula batterica che si disidrata e muore
 □ A I dati forniti non sono sufficienti. □ B -297 kJ mol⁻¹. □ C -1556 kJ mol⁻¹. □ D -594 kJ mol⁻¹. 	14 - Sapendo che la Kps di PbSO ₄ è 6,3×10 ⁻⁷ , indicare la il volume di acqua necessario per sciogliere 96,0 g di PbSO ₄ . (Il peso atomico del piombo è 207,2 u.m.a.)
12 – Indicare il valore della Kc per l'equilibrio:	□ A - 50 litri
$C(s) + CO_2(g) \rightleftharpoons 2 CO(g)$	□ B - 100 litri
a 600°C sapendo che in un recipiente di 10,0 L una	□ C - 200 litri
miscela all'equilibrio contiene: 8 moli di C(s), 16 moli	□ D - 400 litri
di CO ₂ e 2 moli CO.	15 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
П A 0.75	15 - Secondo la teoria VB in quali delle seguenti
□ A - 0,75 □ B - 0,025	molecole, NH ₃ , ClO ₂ , CCl ₃ ⁺ , BeCl ₂ , l'atomo centrale
□ C - 0,031	impiega orbitali ibridi sp ² per formare i legami?
$\Box D - 4,50$	□ A - solo CCl ₃ ⁺
L D = 4,30	\square B - NH ₃ e ClO ₂ -
13 – Sapendo che la parete cellulare dei batteri è una	\square C - BeCl ₂ e CCl ₃ ⁺
membrana semipermeabile all'acqua e che il liquido	\square D - NH ₃ , ClO ₂ e CCl ₃ ⁺
intracellulare contiene NaCl diluito, le proprietà	2 D 14113, C101 C CC13
battericide di una soluzione concentrata di NaCl sono	16 – Indicare il composto in cui l'azoto ha numero
dovute a:	di ossidazione maggiore :
☐ A - l'acqua passa attraverso la membrana	☐ A- ammoniaca
dall'esterno all'interno della cellula batterica che si	☐ B- acido nitroso
gonfia esplodendo e muore	☐ C- biossido di azoto
☐ B - il sale passa all'interno della cellula	☐ D- monossido di diazoto

Costanti utili

determinando un abbassamento crioscopico e quindi il

congelamento della cellula batterica che muore

□ D-

monossido di diazoto

Numero di Avogadro, $N = 6,022 \times 10^{23}$; Costante dei gas, R = 0,0821 L atm moli⁻¹ $K^{-1} = 8,314$ J moli⁻¹ K^{-1} ; Costante di Rydberg=2,180×10⁻¹⁸ J Velocità della luce c=3,00×10⁸ m/s Costante di Planck h=6,63×10⁻³⁴ J·s Costante di Faraday, F=96500 C/mol

IIIA IVA VA VIA VIIA IA IIA

Н																	Не
1,008																	4,00
Li	Be											В	С	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90	50,94	52,00	54,94	55,85	58,93		63,55	65,39		72,61	74.92		79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
					95,94					107,9		114,8	118,7		127,6	126,9	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
										197,0	_		207,2				