

Programming

Loriano Storchi

loriano@storchi.org

http:://www.storchi.org/

mailto:loriano@storchi.org

Algorithms

● Algorithms describe the way in which information is
transformed. Informatics takes care of their theory, analysis,
planning, their efficiency, realization and application.

● An algorithm is a formal process that solves a given problem
through a finite number of steps. The term derives from the
Latin transcription of the name of the Persian mathematician al-
Khwarizmi, who is considered one of the first authors to refer to
this concept. The algorithm is a fundamental concept of
computer science, first of all because it is the basis of the
theoretical notion of calculability: a problem can be
calculated when it can be solved using an algorithm.
(Wikipedia)

Programming

● It identifies the activity by which one "instructs" a
computer to execute a particular set of actions, which
act on input data, in order to solve a problem and thus
produce appropriate output data. Implementation of a
given algorithm.

COMPUTER
INPUT OUTPUT

INSTRUCTIONS

Languages

The L0 level represents the
real computer and the
machine language that it is
able to execute directly. Each
higher level represents an
abstract machine. The
programs (instructions) of
each higher level must be or
translated in terms of
instructions from one of the
lower levels, or interpreted by
a program that runs on an
abstract machine of a strictly
lower level.

Machine language and ASSEMBLY

Each computer is able to interpret a low-level language called machine language, the
instructions (OPCODE) are simple sequences of bits that the processor interprets and
follows a precise series of operations. Each instruction at this level is constituted by
extremely basic operation.

To make programming more immediate, the first step was the introduction of the
ASSEMBLY, where the binary code is replaced by mnemonic instructions that are
humanly more easily usable.

Machine Language:
00000000000000000000000001000000
00000000000100000000000001000100
00000010000000010000000000000000
00000001000000000000000000111100

PSEUDO-ASSEMBLY:
 z : INT;
 x : INT 8;
 y : INT 38;
 LOAD R0,x;
 LOAD R1,y;

ADD R0,R1;
 STORE R0,z;

LANGUAGES

● Today there are many programming languages. In general, every
language is more or less adapted to a specific purpose.

● Natural languages: they are spontaneously given are extremely
expressive but ambiguous: “la vecchia porta la sbarra”

● Artificial languages: they are languages that have a precise date of birth
and a list of authors. Artificial languages can be formal and non-formal.

● Formal languages: unambiguous constituted by a finite set of strings
built from a finite alphabet. It is a language for which the form of the
sentences (syntax) and the meaning of the same (semantics) are
defined in a non-ambiguous way. It is therefore possible to define an
algorithmic procedure able to verify the grammatical correctness of
the sentences.

LANGUAGES

● To define a language rigorously some basic tools are needed:

– Alphabet: set of basic symbols necessary to form words
– Lexicon: set of rules necessary to acrivere the words of a

language (vocabulary)
– Syntax (grammatical rules): set of rules that establish

whether a sentence (set of words) is correct
– Semantics: defines the meaning of a syntactically

correct "sentence", for example: int a [5]; in C language it
allows to reserve space in memory necessary to contain 5
integers

LANGUAGES

● We already mentioned artificial languages, machine languages and low
level language (ASSEMBLY)

● High-level languages move away from the logic of the processor and
are built to be simple, efficient and readable, as well as independent
of the machine

● There are many programming languages, even if those actually used
are about ten.

● The following is a summary classification of these languages

– C, C ++, C #, JAVA, PYTHON, FORTRAN, PASCAL, BASIC,
Objectice-C and many others

● Clearly every programming paradigm is more or less suitable for a more
or less specific purpose.

CLASSIFICATION OF
LANGUAGES

IMPERATIVE LANGUAGES

● The fundamental component of the program is the instruction, and
each instruction indicates the operation to be performed. The
individual instructions that operated on the program data.

● The instructions are executed one after the other

● Each program consists of two fundamental parts: the
declaration of data and the algorithm intended as a sequence
of operations

● Each instruction is an order (declarative programming the
program is a series of statements)

– In fact, from a syntactic point of view, many imperative
languages use verbs in the imperative (i.e. PRINT, READ, ...)

IMPERATIVE LANGUAGES

READ *, A, B

C = A + B

PRINT C

Then a series of instructions read A and B, calculate C as
the sum of A plus B and finally print the result

PROCEDURAL PROGRAMMING

● We can consider it a sub-paradigm of imperative
programming.

● The concept of sub-program (subroutine) or functions
is introduced.

● Then we introduce the possibility to create portions of
source code useful to perform specific functions.

● These subprograms can receive input parameters and
return output values.

PROCEDURAL PROGRAMMING

SUB EXSUMMA (A, B, C)

 C = A + B

END SUB

FUNCTION SUM (A, B)

 C = A + B

 RETURN C

END FUNCTION

MAIN
 READ A, B
 PRINT SUM (A,B)
 EXSUM (A,B,C)
 PRINT C

Example of use of a subroutine and a function for
calculating the sum (reusability of the code, function
libraries)

STRUCTURED PROGRAMMING

● We can consider it a sub-paradigm of imperative
programming.

● In practice, the programmer is bound to use canonical
control structures that do not include the
unconditional jump instructions (GOTO). Thus the
syntax of language prevents the use of structures that do
not follow certain constraints. (not only)

● The use of the GOTO instruction inevitably leads to a
poor readability of the code (spaghetti-code)

STRUCTURED PROGRAMMING

● Example

Object-Oriented programming

● We can consider it a sub-paradigm of imperative programming.

● This programming paradigm allows to define Software Objects able to
interact with each other.

● The organization of the software in the form of objects allows an easier
reuse of the same code. A better organization of large projects.

● The OOP languages provide for the grouping of part of the source
code into classes, each class includes data and methods (functions)
that operate on the data themselves. Classes are abstract models that
are invoked at the time of execution to create or instantiate software
objects.

● An object-oriented language allows to implement three basic mechanisms
using the native language syntax: encapsulation, polymorphism,
inheritance.

Object-Oriented programming

CLASSE QUADRATO
 ATTRIBUTI
 LATO
 COLORE
 METODI
 REAL OTTIENI_AREA()
 SET_LATO (VAL)

OBJECTS

QUADRATO 1
 LATO = 1.0
 COLORE = VERDE

QUADRATO 2
 LATO = 1.5
 COLORE = GIALLO

Object-Oriented programming

● Encapsulation: precise separation between implementation and interface
of the class. Who uses the class (object) does not have to know the
implementation detail. Use the class using public methods and data
interacting with the object without knowing the implementation details

MAIN

 TRIANGOLO T1

 T1.COLORE = GRIGIO

 T1.SET_LATO(2.0)

 PRINT T1.CALCOLA_AREA ()

Object-Oriented programming

● Inheritance: a class can inherit from a base class and
evolve or specialize its functionality.

● For example, I can imagine a figura_geometrica class from
which classes such as triangolo, cerchio, quadrato ...
derive.

● Classes that derive from a base class inherit all the methods
and properties of the base class, but can specialize by
defining their own methods and data.

● For example, if B is a subclass (or more generally a
subtype) than A, any program / function that can use A
can also use B

Object-Oriented programming

● Polymorphism: we can try to exemplify this concept by
saying: multiple definition of the same function
(overloading), classes and parametric functions with
respect to the type of data. Simple example of overloading
of functions.

● We can formally distinguish in at least four types of
polymorphism: by inclusion, parametric, overloading,
coercion.

● We will only do a few simple examples useful for clarifying
the general concept.

Object-Oriented programming

● we imagine the usual figura_geometrica class from which we have
derived two classes cerchio e triangolo

● When the user calls the method calculate area this will perform a certain
action (calculation of the area in the two cases while having the same
name

Figura_geometrica

CalcolaArea

Cerchio

CalcolaArea

Triangolo

CalcolaArea

FUNCTIONAL PROGRAMMING

● As the name implies, the execution flow takes the form of
evaluation of a series of evaluations of mathematical
functions. The program is therefore a set of functions

● In pure functional languages there is no concept of allocation, or
explicit allocation of memory.

● Values are not found by changing the status of the program,
there is no value assignment, but building the new state by
functions from the previous state.

● Uses in the ambit of AI (little or no use in industry)

● Functions can be passed as parameters and returned as "result"
from other functions.

DECLARATIVE PROGRAMMING

● Compared to the imperative paradigm, the program
consists of a series of statements and not of orders.

● In the program you specify WHAT you want to get not
the HOW. The how is left to the executor

● In practice, the program (or its execution) can be
considered as the demonstration of the truth of an
affirmation.

LANGUAGES

● The languages can also be classified according to the data
typing: static typing and dynamic typing.

● Static typing: the programmer is forced to explicitly specify the
type of each syntactic element. For example, he must specify
the type of a variable and the language will then guarantee
that that variable will be used consistently with the
declaration.

● Dynamic typing: for example in this case the data will
assume a type that varies at runtime depending on the
assignments made (see Python)

● We can then also distinguish between weak and strong typing

LANGUAGES

● Parallel programming languages or paradigms (for modern
architectures) if you are curious you can see here for
example http://www.storchi.org/lecturenotes/acr/index.html

● Esoteric languages: these are highly complex and unclear
languages. Popular only among the most skilled and used
users for the sole purpose of testing the ability of
programming (essentially recreational purpose)

● Scripting: originally created for use in Unix shells. They
are languages used to automate repetitive and long tasks.

PROGRAMMING, COMPILING
AND LINKING

Programming

● The source is written in ASCII text files. The source expresses the
algorithm implemented in the chosen language. To write the source you
can use simple text editors (VI, Emacs). Or IDE developmental
ambiguities integrated with other tools, such as compilers, linkers
and debugger.

● Compilation: the source is translated (from the compiler) from a high
level language to executable code. The advantage is that the execution
is "fast" and that the code is optimized for the specific platform. The
disadvantage is that you will have to re-compile for each different
operating system or hardware.

● Linking: each program generally uses one or more libraries and the linker
links libraries and the starting program together. Linking can be both static
and dynamic (for example .so libraries in Linux / Unix-like or .dll in
windows)

Programming

Programming

● Interpretation: in order to avoid the portability of the programs,
the concept of interpretations has been used. In this case the
source code is not compiled "translated" but executed by
an interpreter. This introduces other problems such as
performance.

● Bytecode, P-code: we can define it as an intermediate
approach in which the source program is "translated" into
an intermediate code that is interpreted by a virtual
machine. This allows to combine two advantages a good
speed of execution together with an extreme portability of the
program. JIT (Just in Time) at the time of execution fill in
the intermediate code in machine code.

Programming

COMPUTABILITY AND
COMPLEXITY

COMPUTABILITY AND
COMPLEXITY
● Computability : Given a function it is called calculable

if we can find an algorithm (hence a procedure that
mechanically executes a finite number of steps) that
computes it.

● Church-Turing Thesis, the class of calculable
functions coincides with the class of functions that
can be calculated by a Turing machine.

● All calculation machines (computers) can be traced
back to a Turing machine.

COMPUTABILITY AND
COMPLEXITY
● Turing Machine

Deterministic model with ribbon and 5-field
instructions:

1 - A long ribbon at will that can contain
characters or empty spaces
2 - head / device for reading and writing with
which to read and write on the tape and
obviously the head can move the tape to the
right or left
3 - The machine has an internal status

At every step, the machine reads a symbol and, depending on its internal state,
can change state and then write a symbol on the tape and then move the tape to
the right or left.
The behavior of the Turing Machine is programmed defining the rules or
quadruples of the type:

(internal state, symbol-read, new-state, written-symbol / direction)

COMPUTABILITY AND
COMPLEXITY

● Halting problem: given a certain program and given an
input it is impossible to determine if this program will end
or not. (this problem is strongly linked to Gödel's
incompleteness theorem)

COMPUTABILITY AND
COMPLEXITY

● Algorithm complexity: it is the measure of the difficulty of a
calculation (algorithm + input)

● The goodness of an algorithm is evaluated in relation to the
time and space necessary for its execution, in general therefore
according to the resources required.

● Clearly the execution time is a function of the type of input as
well as the type of hardware used, so it makes no sense to
classify the algorithms according to the number of seconds
required for its execution.

● The calculation time is therefore expressed as the number of
elementary operations according to the N dimension of the
input data

COMPUTABILITY AND
COMPLEXITY

● Example calculation of the efficiency of an algorithm in which
we look for the minimum m within a set of N numbers
{x1, x2, ..., xN}

● Let's imagine tackling the problem as follows:

– I choose x1 as a minimum possible
– compare it with x2, then x3 and so on
– If I find a smaller xi I continue comparing it with that as I

did with x1
– At the end I found the minimum

● To do everything I will have done N comparisons so the
efficiency of the algorithm is directly proportional to the
N dimensions of the input

COMPUTABILITY AND
COMPLEXITY

● The efficiency of a given algorithm can therefore be
expressed as a function f (N), hence a function of the
variable N which represents the size of the input data.

– This function therefore expresses the number of elementary
operations necessary to solve the problem by means of the
algorithm given as a function of the input size

– It therefore represents the complexity of the computation
– Given N an algorithm A is more efficient than another B

if at the growth of N fA (N) is less than or equal to fB (N)

● The execution time of a program therefore depends on the
complexity of the algorithm, on the size of N and
obviously on the "speed" of the machine on which it is
executed.

COMPUTABILITY AND
COMPLEXITY

● To subdivide the algorithms into complexity classes, the
following criterion is used:

● A function f(N) is said to be of order g(N) and is indicated
with f(N) = O(g (N)) if there exists a constant K such that,
unless for a finite number of values of N the following
inequality is always true: f (N) ≤ K * g (N). You can also
write f (n) / g (N) ≤ K

● For example 2 * N + 5 = O (N) in fact 2 * N + 5 ≤ 7 * N for
every N greater than zero

COMPUTABILITY AND
COMPLEXITY

COMPUTABILITY AND
COMPLEXITY

Complexity classes P and NP, if P
is the same as NP or less, is still an
open problem (million dollar
problem Clay Math Institute)

Class P problems solvable in a
deterministic Turing machine in
polynomial times.

Class NP problems for which an algorithm with polynomial complexity is not
known. But they are verifiable instead quickly

NP-complete problems The simplest way to describe it if one of the NP-
complete problems is easy then all are since I can "convert" the resolution of
one into another. Likewise, if one is difficult, they are all difficult.

EXAMPLE: Factorization in prime numbers of an integer NP problem (most
likely it is not NP-complete yet we can not say) given c find the factors prime a and
b such that a * b = n

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

